These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 29457314)

  • 1. Latent source mining in FMRI via restricted Boltzmann machine.
    Hu X; Huang H; Peng B; Han J; Liu N; Lv J; Guo L; Guo C; Liu T
    Hum Brain Mapp; 2018 Jun; 39(6):2368-2380. PubMed ID: 29457314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autoencoder and restricted Boltzmann machine for transfer learning in functional magnetic resonance imaging task classification.
    Hwang J; Lustig N; Jung M; Lee JH
    Heliyon; 2023 Jul; 9(7):e18086. PubMed ID: 37519689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A semi-supervised classification RBM with an improved fMRI representation algorithm.
    Chang C; Liu N; Yao L; Zhao X
    Comput Methods Programs Biomed; 2022 Jul; 222():106960. PubMed ID: 35753106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of fMRI data by blind separation into independent spatial components.
    McKeown MJ; Makeig S; Brown GG; Jung TP; Kindermann SS; Bell AJ; Sejnowski TJ
    Hum Brain Mapp; 1998; 6(3):160-88. PubMed ID: 9673671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A semi-blind online dictionary learning approach for fMRI data.
    Long Z; Liu L; Gao Z; Chen M; Yao L
    J Neurosci Methods; 2019 Jul; 323():1-12. PubMed ID: 31085215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Restricted Boltzmann machines for neuroimaging: an application in identifying intrinsic networks.
    Hjelm RD; Calhoun VD; Salakhutdinov R; Allen EA; Adali T; Plis SM
    Neuroimage; 2014 Aug; 96():245-60. PubMed ID: 24680869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Group-representative functional network estimation from multi-subject fMRI data via MRF-based image segmentation.
    Tang B; Iyer A; Rao V; Kong N
    Comput Methods Programs Biomed; 2019 Oct; 179():104976. PubMed ID: 31443856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep attentive spatio-temporal feature learning for automatic resting-state fMRI denoising.
    Heo KS; Shin DH; Hung SC; Lin W; Zhang H; Shen D; Kam TE
    Neuroimage; 2022 Jul; 254():119127. PubMed ID: 35337965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of separation performance of independent component analysis algorithms for fMRI data.
    Sariya YK; Anand RS
    J Integr Neurosci; 2017; 16(2):157-175. PubMed ID: 28891507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved FastICA algorithm in fMRI data analysis using the sparsity property of the sources.
    Ge R; Wang Y; Zhang J; Yao L; Zhang H; Long Z
    J Neurosci Methods; 2016 Apr; 263():103-14. PubMed ID: 26880161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying Brain Networks at Multiple Time Scales via Deep Recurrent Neural Network.
    Cui Y; Zhao S; Wang H; Xie L; Chen Y; Han J; Guo L; Zhou F; Liu T
    IEEE J Biomed Health Inform; 2019 Nov; 23(6):2515-2525. PubMed ID: 30475739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatio-temporal modeling of connectome-scale brain network interactions via time-evolving graphs.
    Yuan J; Li X; Zhang J; Luo L; Dong Q; Lv J; Zhao Y; Jiang X; Zhang S; Zhang W; Liu T
    Neuroimage; 2018 Oct; 180(Pt B):350-369. PubMed ID: 29102809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatially regularized machine learning for task and resting-state fMRI.
    Song X; Panych LP; Chen NK
    J Neurosci Methods; 2016 Jan; 257():214-28. PubMed ID: 26470627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoding and mapping task states of the human brain via deep learning.
    Wang X; Liang X; Jiang Z; Nguchu BA; Zhou Y; Wang Y; Wang H; Li Y; Zhu Y; Wu F; Gao JH; Qiu B
    Hum Brain Mapp; 2020 Apr; 41(6):1505-1519. PubMed ID: 31816152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Test-retest reliability of spatial patterns from resting-state functional MRI using the restricted Boltzmann machine and hierarchically organized spatial patterns from the deep belief network.
    Kim HC; Jang H; Lee JH
    J Neurosci Methods; 2020 Jan; 330():108451. PubMed ID: 31626847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sparse representation of HCP grayordinate data reveals novel functional architecture of cerebral cortex.
    Jiang X; Li X; Lv J; Zhang T; Zhang S; Guo L; Liu T
    Hum Brain Mapp; 2015 Dec; 36(12):5301-19. PubMed ID: 26466353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Task-specific feature extraction and classification of fMRI volumes using a deep neural network initialized with a deep belief network: Evaluation using sensorimotor tasks.
    Jang H; Plis SM; Calhoun VD; Lee JH
    Neuroimage; 2017 Jan; 145(Pt B):314-328. PubMed ID: 27079534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model order effects on ICA of resting-state complex-valued fMRI data: Application to schizophrenia.
    Kuang LD; Lin QH; Gong XF; Cong F; Sui J; Calhoun VD
    J Neurosci Methods; 2018 Jul; 304():24-38. PubMed ID: 29673968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separating 4D multi-task fMRI data of multiple subjects by independent component analysis with projection.
    Long Z; Li R; Wen X; Jin Z; Chen K; Yao L
    Magn Reson Imaging; 2013 Jan; 31(1):60-74. PubMed ID: 22898701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of auditory cortex activity by fMRI using a dependent component analysis.
    Estombelo-Montesco CA; Sturzbecher M; Barros AK; de Araujo DB
    Adv Exp Med Biol; 2010; 657():135-45. PubMed ID: 20020345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.