These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 29457350)
1. Reactivating Catalytic Surface: Insights into the Role of Hot Holes in Plasmonic Catalysis. Peng T; Miao J; Gao Z; Zhang L; Gao Y; Fan C; Li D Small; 2018 Mar; 14(12):e1703510. PubMed ID: 29457350 [TBL] [Abstract][Full Text] [Related]
2. Plasmon-Driven Catalysis on Molecules and Nanomaterials. Zhang Z; Zhang C; Zheng H; Xu H Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904 [TBL] [Abstract][Full Text] [Related]
3. Hot electron and thermal effects in plasmonic catalysis of nanocrystal transformation. Zhang C; Kong T; Fu Z; Zhang Z; Zheng H Nanoscale; 2020 Apr; 12(16):8768-8774. PubMed ID: 32101225 [TBL] [Abstract][Full Text] [Related]
4. Hot plasmonic electron-driven catalytic reactions on patterned metal-insulator-metal nanostructures. Kim SM; Lee C; Goddeti KC; Park JY Nanoscale; 2017 Aug; 9(32):11667-11677. PubMed ID: 28776052 [TBL] [Abstract][Full Text] [Related]
5. Hot Hole Collection and Photoelectrochemical CO DuChene JS; Tagliabue G; Welch AJ; Cheng WH; Atwater HA Nano Lett; 2018 Apr; 18(4):2545-2550. PubMed ID: 29522350 [TBL] [Abstract][Full Text] [Related]
6. Light-Induced Voltages in Catalysis by Plasmonic Nanostructures. Wilson AJ; Jain PK Acc Chem Res; 2020 Sep; 53(9):1773-1781. PubMed ID: 32786334 [TBL] [Abstract][Full Text] [Related]
7. Monitoring Hot Holes in Plasmonic Catalysis on Silver Nanoparticles by Using an Ion Label. Du X; Wang T; Li Y; Zhu A; Hu Y; Du A; Zhao Y; Xie W Nano Lett; 2024 Sep; 24(37):11648-11653. PubMed ID: 39225486 [TBL] [Abstract][Full Text] [Related]
8. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis. Hammarström L Acc Chem Res; 2015 Mar; 48(3):840-50. PubMed ID: 25675365 [TBL] [Abstract][Full Text] [Related]
9. Hot-electron-mediated surface chemistry: toward electronic control of catalytic activity. Park JY; Kim SM; Lee H; Nedrygailov II Acc Chem Res; 2015 Aug; 48(8):2475-83. PubMed ID: 26181684 [TBL] [Abstract][Full Text] [Related]
10. Hot Electrons, Hot Holes, or Both? Tandem Synthesis of Imines Driven by the Plasmonic Excitation in Au/CeO Teixeira IF; Homsi MS; Geonmonond RS; Rocha GFSR; Peng YK; Silva IF; Quiroz J; Camargo PHC Nanomaterials (Basel); 2020 Aug; 10(8):. PubMed ID: 32759860 [TBL] [Abstract][Full Text] [Related]
11. Plasmon-promoted electrocatalytic water splitting on metal-semiconductor nanocomposites: the interfacial charge transfer and the real catalytic sites. Du L; Shi G; Zhao Y; Chen X; Sun H; Liu F; Cheng F; Xie W Chem Sci; 2019 Nov; 10(41):9605-9612. PubMed ID: 32055334 [TBL] [Abstract][Full Text] [Related]
12. Elucidating the Origin of Plasmon-Generated Hot Holes in Water Oxidation. Huang J; Guo W; He S; Mulcahy JR; Montoya A; Goodsell J; Wijerathne N; Angerhofer A; Wei WD ACS Nano; 2023 Apr; 17(8):7813-7820. PubMed ID: 37053524 [TBL] [Abstract][Full Text] [Related]
13. Positioning the Water Oxidation Reaction Sites in Plasmonic Photocatalysts. Wang S; Gao Y; Miao S; Liu T; Mu L; Li R; Fan F; Li C J Am Chem Soc; 2017 Aug; 139(34):11771-11778. PubMed ID: 28777568 [TBL] [Abstract][Full Text] [Related]
14. Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer. Li J; Cushing SK; Zheng P; Senty T; Meng F; Bristow AD; Manivannan A; Wu N J Am Chem Soc; 2014 Jun; 136(23):8438-49. PubMed ID: 24836347 [TBL] [Abstract][Full Text] [Related]
15. Elucidating the Roles of Local and Nonlocal Rate Enhancement Mechanisms in Plasmonic Catalysis. Elias RC; Linic S J Am Chem Soc; 2022 Nov; 144(43):19990-19998. PubMed ID: 36279510 [TBL] [Abstract][Full Text] [Related]
16. Plasmonic-enhanced catalytic activity of methanol oxidation on Au-graphene-Cu nanosandwiches. Liu Y; Chen F; Wang Q; Wang J; Wang J; Guo L; Gebremariam TT Nanoscale; 2019 May; 11(18):8812-8824. PubMed ID: 31011725 [TBL] [Abstract][Full Text] [Related]
17. The Pivotal Role of Hot Carriers in Plasmonic Catalysis of C-N Bond Forming Reaction of Amines. Swaminathan S; Rao VG; Bera JK; Chandra M Angew Chem Int Ed Engl; 2021 May; 60(22):12532-12538. PubMed ID: 33734534 [TBL] [Abstract][Full Text] [Related]
18. Using Hot Electrons and Hot Holes for Simultaneous Cocatalyst Deposition on Plasmonic Nanostructures. Kontoleta E; Tsoukala A; Askes SHC; Zoethout E; Oksenberg E; Agrawal H; Garnett EC ACS Appl Mater Interfaces; 2020 Aug; 12(32):35986-35994. PubMed ID: 32672034 [TBL] [Abstract][Full Text] [Related]
19. Light-concentrating plasmonic Au superstructures with significantly visible-light-enhanced catalytic performance. Yang J; Li Y; Zu L; Tong L; Liu G; Qin Y; Shi D ACS Appl Mater Interfaces; 2015 Apr; 7(15):8200-8. PubMed ID: 25840556 [TBL] [Abstract][Full Text] [Related]
20. The surface plasmon-induced hot carrier effect on the catalytic activity of CO oxidation on a Cu Lee SW; Hong JW; Lee H; Wi DH; Kim SM; Han SW; Park JY Nanoscale; 2018 Jun; 10(23):10835-10843. PubMed ID: 29694476 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]