BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 29457591)

  • 1. Effects of polycaprolactone-biphasic calcium phosphate scaffolds on enhancing growth and differentiation of osteoblasts.
    Thuaksuban N; Monmaturapoj N; Luntheng T
    Biomed Mater Eng; 2018; 29(2):159-176. PubMed ID: 29457591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical characteristics and biocompatibility of the polycaprolactone-biphasic calcium phosphate scaffolds fabricated using the modified melt stretching and multilayer deposition.
    Thuaksuban N; Luntheng T; Monmaturapoj N
    J Biomater Appl; 2016 May; 30(10):1460-72. PubMed ID: 27013219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo biocompatibility and degradation of novel Polycaprolactone-Biphasic Calcium phosphate scaffolds used as a bone substitute.
    Thuaksuban N; Pannak R; Boonyaphiphat P; Monmaturapoj N
    Biomed Mater Eng; 2018; 29(2):253-267. PubMed ID: 29457598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro biocompatibility analysis of novel nano-biphasic calcium phosphate scaffolds in different composition ratios.
    Ebrahimi M; Pripatnanont P; Suttapreyasri S; Monmaturapoj N
    J Biomed Mater Res B Appl Biomater; 2014 Jan; 102(1):52-61. PubMed ID: 23847019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface modification of porous polycaprolactone/biphasic calcium phosphate scaffolds for bone regeneration in rat calvaria defect.
    Kim JH; Linh NT; Min YK; Lee BT
    J Biomater Appl; 2014 Oct; 29(4):624-35. PubMed ID: 24939961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Effect of Alendronate Loaded Biphasic Calcium Phosphate Scaffolds on Bone Regeneration in a Rat Tibial Defect Model.
    Park KW; Yun YP; Kim SE; Song HR
    Int J Mol Sci; 2015 Nov; 16(11):26738-53. PubMed ID: 26561810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction of bone formation in biphasic calcium phosphate scaffolds by bone morphogenetic protein-2 and primary osteoblasts.
    Strobel LA; Rath SN; Maier AK; Beier JP; Arkudas A; Greil P; Horch RE; Kneser U
    J Tissue Eng Regen Med; 2014 Mar; 8(3):176-85. PubMed ID: 22740314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Testosterone improves the osteogenic potential of a composite in vitro and in vivo.
    da Costa KJR; Gala-García A; Passos JJ; Santos VR; Sinisterra RD; Lanza CRM; Cortés ME
    Cell Tissue Res; 2019 May; 376(2):221-231. PubMed ID: 30635775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds.
    Roohani-Esfahani SI; Lu ZF; Li JJ; Ellis-Behnke R; Kaplan DL; Zreiqat H
    Acta Biomater; 2012 Jan; 8(1):302-12. PubMed ID: 22023750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the cytocompatibility hemocompatibility in vivo bone tissue regenerating capability of different PCL blends.
    Padalhin AR; Thuy Ba Linh N; Ki Min Y; Lee BT
    J Biomater Sci Polym Ed; 2014; 25(5):487-503. PubMed ID: 24450757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Growth Factor-Free Co-Culture System of Osteoblasts and Peripheral Blood Mononuclear Cells for the Evaluation of the Osteogenesis Potential of Melt-Electrowritten Polycaprolactone Scaffolds.
    Hammerl A; Diaz Cano CE; De-Juan-Pardo EM; van Griensven M; Poh PSP
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30823680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solid free-form fabrication-based PCL/HA scaffolds fabricated with a multi-head deposition system for bone tissue engineering.
    Kim JY; Lee TJ; Cho DW; Kim BS
    J Biomater Sci Polym Ed; 2010; 21(6-7):951-62. PubMed ID: 20482995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of bone regeneration of a tissue-engineered bone complex using human dental pulp stem cells/poly(ε-caprolactone)-biphasic calcium phosphate scaffold constructs in rabbit calvarial defects.
    Wongsupa N; Nuntanaranont T; Kamolmattayakul S; Thuaksuban N
    J Mater Sci Mater Med; 2017 May; 28(5):77. PubMed ID: 28386853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites.
    Roohani-Esfahani SI; Nouri-Khorasani S; Lu Z; Appleyard R; Zreiqat H
    Biomaterials; 2010 Jul; 31(21):5498-509. PubMed ID: 20398935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering.
    Shor L; Güçeri S; Chang R; Gordon J; Kang Q; Hartsock L; An Y; Sun W
    Biofabrication; 2009 Mar; 1(1):015003. PubMed ID: 20811098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Melt-electrospun polycaprolactone strontium-substituted bioactive glass scaffolds for bone regeneration.
    Ren J; Blackwood KA; Doustgani A; Poh PP; Steck R; Stevens MM; Woodruff MA
    J Biomed Mater Res A; 2014 Sep; 102(9):3140-53. PubMed ID: 24133006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro and in vivo evaluation of a biphasic calcium phosphate scaffold coated with a native allogeneic extracellular matrix.
    Zhou S; Zhao W; Liu X; Liu G; Xi C; Wang X; Yan J
    J Tissue Eng Regen Med; 2014 Aug; 8(8):620-8. PubMed ID: 22730247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradable polycaprolactone-chitosan three-dimensional scaffolds fabricated by melt stretching and multilayer deposition for bone tissue engineering: assessment of the physical properties and cellular response.
    Thuaksuban N; Nuntanaranont T; Pattanachot W; Suttapreyasri S; Cheung LK
    Biomed Mater; 2011 Feb; 6(1):015009. PubMed ID: 21205996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functionalization of polycaprolactone scaffolds with hyaluronic acid and β-TCP facilitates migration and osteogenic differentiation of human dental pulp stem cells in vitro.
    Jensen J; Kraft DC; Lysdahl H; Foldager CB; Chen M; Kristiansen AA; Rölfing JH; Bünger CE
    Tissue Eng Part A; 2015 Feb; 21(3-4):729-39. PubMed ID: 25252795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro and in vivo studies of BMP-2-loaded PCL-gelatin-BCP electrospun scaffolds.
    Kim BR; Nguyen TB; Min YK; Lee BT
    Tissue Eng Part A; 2014 Dec; 20(23-24):3279-89. PubMed ID: 24935525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.