These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The interplay of protein engineering and glycoengineering to fine-tune antibody glycosylation and its impact on effector functions. Wang Q; Wang T; Zhang R; Yang S; McFarland KS; Chung CY; Jia H; Wang LX; Cipollo JF; Betenbaugh MJ Biotechnol Bioeng; 2022 Jan; 119(1):102-117. PubMed ID: 34647616 [TBL] [Abstract][Full Text] [Related]
3. Glycoengineering of CHO Cells to Improve Product Quality. Wang Q; Yin B; Chung CY; Betenbaugh MJ Methods Mol Biol; 2017; 1603():25-44. PubMed ID: 28493121 [TBL] [Abstract][Full Text] [Related]
4. Glycoengineering of Mammalian Expression Systems on a Cellular Level. Heffner KM; Wang Q; Hizal DB; Can Ö; Betenbaugh MJ Adv Biochem Eng Biotechnol; 2021; 175():37-69. PubMed ID: 29532110 [TBL] [Abstract][Full Text] [Related]
5. Application of the CRISPR/Cas9 Gene Editing Method for Modulating Antibody Fucosylation in CHO Cells. Wang Q; Chung CY; Rosenberg JN; Yu G; Betenbaugh MJ Methods Mol Biol; 2018; 1850():237-257. PubMed ID: 30242691 [TBL] [Abstract][Full Text] [Related]
6. Metabolic engineering of CHO cells to prepare glycoproteins. Wang Q; Betenbaugh MJ Emerg Top Life Sci; 2018 Oct; 2(3):433-442. PubMed ID: 33525787 [TBL] [Abstract][Full Text] [Related]
7. FX knockout CHO hosts can express desired ratios of fucosylated or afucosylated antibodies with high titers and comparable product quality. Louie S; Haley B; Marshall B; Heidersbach A; Yim M; Brozynski M; Tang D; Lam C; Petryniak B; Shaw D; Shim J; Miller A; Lowe JB; Snedecor B; Misaghi S Biotechnol Bioeng; 2017 Mar; 114(3):632-644. PubMed ID: 27666939 [TBL] [Abstract][Full Text] [Related]
8. Glycosylation control technologies for recombinant therapeutic proteins. Gupta SK; Shukla P Appl Microbiol Biotechnol; 2018 Dec; 102(24):10457-10468. PubMed ID: 30334089 [TBL] [Abstract][Full Text] [Related]
9. Glycoengineering Chinese hamster ovary cells: a short history. Donini R; Haslam SM; Kontoravdi C Biochem Soc Trans; 2021 Apr; 49(2):915-931. PubMed ID: 33704400 [TBL] [Abstract][Full Text] [Related]
10. Crystallizable Fragment Glycoengineering for Therapeutic Antibodies Development. Li W; Zhu Z; Chen W; Feng Y; Dimitrov DS Front Immunol; 2017; 8():1554. PubMed ID: 29181010 [TBL] [Abstract][Full Text] [Related]
11. Combinatorial genome and protein engineering yields monoclonal antibodies with hypergalactosylation from CHO cells. Chung CY; Wang Q; Yang S; Ponce SA; Kirsch BJ; Zhang H; Betenbaugh MJ Biotechnol Bioeng; 2017 Dec; 114(12):2848-2856. PubMed ID: 28926673 [TBL] [Abstract][Full Text] [Related]
12. Recent advances in the understanding of biological implications and modulation methodologies of monoclonal antibody N-linked high mannose glycans. Shi HH; Goudar CT Biotechnol Bioeng; 2014 Oct; 111(10):1907-19. PubMed ID: 24975601 [TBL] [Abstract][Full Text] [Related]
13. Engineered CHO cells for production of diverse, homogeneous glycoproteins. Yang Z; Wang S; Halim A; Schulz MA; Frodin M; Rahman SH; Vester-Christensen MB; Behrens C; Kristensen C; Vakhrushev SY; Bennett EP; Wandall HH; Clausen H Nat Biotechnol; 2015 Aug; 33(8):842-4. PubMed ID: 26192319 [TBL] [Abstract][Full Text] [Related]
14. In vitro glycoengineering of IgG1 and its effect on Fc receptor binding and ADCC activity. Thomann M; Schlothauer T; Dashivets T; Malik S; Avenal C; Bulau P; Rüger P; Reusch D PLoS One; 2015; 10(8):e0134949. PubMed ID: 26266936 [TBL] [Abstract][Full Text] [Related]
15. Glycoengineering of Antibodies for Modulating Functions. Wang LX; Tong X; Li C; Giddens JP; Li T Annu Rev Biochem; 2019 Jun; 88():433-459. PubMed ID: 30917003 [TBL] [Abstract][Full Text] [Related]
16. Engineering host cell lines to reduce terminal sialylation of secreted antibodies. Naso MF; Tam SH; Scallon BJ; Raju TS MAbs; 2010; 2(5):519-27. PubMed ID: 20716959 [TBL] [Abstract][Full Text] [Related]
17. Fc Glyco- and Fc Protein-Engineering: Design of Antibody Variants with Improved ADCC and CDC Activity. Kellner C; Derer S; Klausz K; Rosskopf S; Wirt T; Rösner T; Otte A; Cappuzzello E; Peipp M Methods Mol Biol; 2018; 1827():381-397. PubMed ID: 30196508 [TBL] [Abstract][Full Text] [Related]
18. Generating and characterizing a comprehensive panel of CHO cells glycosylation mutants for advancing glycobiology and biotechnology research. Haryadi R; Chan KF; Lin PC; Tan YL; Wan C; Shahreel W; Tay SJ; Nguyen-Khuong T; Walsh I; Song Z Sci Rep; 2024 Oct; 14(1):23068. PubMed ID: 39367021 [TBL] [Abstract][Full Text] [Related]
19. Application of the CRISPR/Cas9 Gene Editing Method for Modulating Antibody Fucosylation in CHO Cells. Wang Q; Aliyu L; Chung CY; Rosenberg JN; Yu G; Betenbaugh MJ Methods Mol Biol; 2024; 2810():249-271. PubMed ID: 38926284 [TBL] [Abstract][Full Text] [Related]
20. Arabinosylation of recombinant human immunoglobulin-based protein therapeutics. Hossler P; Chumsae C; Racicot C; Ouellette D; Ibraghimov A; Serna D; Mora A; McDermott S; Labkovsky B; Scesney S; Grinnell C; Preston G; Bose S; Carrillo R MAbs; 2017; 9(4):715-734. PubMed ID: 28375048 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]