These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 29457695)

  • 1. Functionalization of a nanostructured hydroxyapatite with Cu(II) compounds as a pesticide: in situ transmission electron microscopy and environmental scanning electron microscopy observations of treated Vitis vinifera L. leaves.
    Battiston E; Salvatici MC; Lavacchi A; Gatti A; Di Marco S; Mugnai L
    Pest Manag Sci; 2018 Aug; 74(8):1903-1915. PubMed ID: 29457695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Innovative Delivery of Cu(II) Ions by a Nanostructured Hydroxyapatite: Potential Application in Planta to Enhance the Sustainable Control of
    Battiston E; Antonielli L; Di Marco S; Fontaine F; Mugnai L
    Phytopathology; 2019 May; 109(5):748-759. PubMed ID: 30522386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lysobacter capsici AZ78 can be combined with copper to effectively control Plasmopara viticola on grapevine.
    Puopolo G; Giovannini O; Pertot I
    Microbiol Res; 2014; 169(7-8):633-42. PubMed ID: 24140153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Grapevine downy mildew control in organic farming.
    La Torre A; Spera G; Lolletti D
    Commun Agric Appl Biol Sci; 2005; 70(3):371-9. PubMed ID: 16637202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stilbenes from Vitis vinifera L. Waste: A Sustainable Tool for Controlling Plasmopara Viticola.
    Gabaston J; Cantos-Villar E; Biais B; Waffo-Teguo P; Renouf E; Corio-Costet MF; Richard T; Mérillon JM
    J Agric Food Chem; 2017 Apr; 65(13):2711-2718. PubMed ID: 28288509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural products alone or with copper vs. grape downy mildew: efficacy, costs, Cu impact.
    La Torre A; Pompi V; Coramusi A
    Commun Agric Appl Biol Sci; 2010; 75(4):725-32. PubMed ID: 21534483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences in the efficacy of carboxylic acid amide fungicides against less sensitive strains of Plasmopara viticola.
    Nanni IM; Pirondi A; Mancini D; Stammler G; Gold R; Ferri I; Brunelli A; Collina M
    Pest Manag Sci; 2016 Aug; 72(8):1537-9. PubMed ID: 26537744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of downy mildew on grapes in organic viticulture.
    La Torre A; Talocci S; Spera G; Valori R
    Commun Agric Appl Biol Sci; 2008; 73(2):169-78. PubMed ID: 19226754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organic viticulture: efficacy evaluation of different fungicides against Plasmopara viticola.
    Spera G; La Torre A; Alegi S
    Commun Agric Appl Biol Sci; 2003; 68(4 Pt B):837-47. PubMed ID: 15151322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vitis vinifera canes, a new source of antifungal compounds against Plasmopara viticola, Erysiphe necator, and Botrytis cinerea.
    Schnee S; Queiroz EF; Voinesco F; Marcourt L; Dubuis PH; Wolfender JL; Gindro K
    J Agric Food Chem; 2013 Jun; 61(23):5459-67. PubMed ID: 23730921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reducing copper use in the environment: the use of larixol and larixyl acetate to treat downy mildew caused by Plasmopara viticola in viticulture.
    Thuerig B; James EE; Schärer HJ; Langat MK; Mulholland DA; Treutwein J; Kleeberg I; Ludwig M; Jayarajah P; Giovannini O; Markellou E; Tamm L
    Pest Manag Sci; 2018 Feb; 74(2):477-488. PubMed ID: 28905481
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Battiston E; Compant S; Antonielli L; Mondello V; Clément C; Simoni A; Di Marco S; Mugnai L; Fontaine F
    Front Plant Sci; 2021; 12():649694. PubMed ID: 33790931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chitosan and Laminarin as Alternatives to Copper for Plasmopara viticola Control: Effect on Grape Amino Acid.
    Garde-Cerdán T; Mancini V; Carrasco-Quiroz M; Servili A; Gutiérrez-Gamboa G; Foglia R; Pérez-Álvarez EP; Romanazzi G
    J Agric Food Chem; 2017 Aug; 65(34):7379-7386. PubMed ID: 28759217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring of QoI fungicide resistance in Plasmopara viticola populations in Japan.
    Furuya S; Mochizuki M; Saito S; Kobayashi H; Takayanagi T; Suzuki S
    Pest Manag Sci; 2010 Nov; 66(11):1268-72. PubMed ID: 20799246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trichoderma species isolated from grapevine with tolerance towards common copper fungicides used in viticulture for plant protection.
    Küpper V; Steiner U; Kortekamp A
    Pest Manag Sci; 2022 Aug; 78(8):3266-3276. PubMed ID: 35524976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mode of host resistance to Plasmopara viticola infection of grapevines.
    Yu Y; Zhang Y; Yin L; Lu J
    Phytopathology; 2012 Nov; 102(11):1094-101. PubMed ID: 22877313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ethephon elicits protection against Erysiphe necator in grapevine.
    Belhadj A; Telef N; Cluzet S; Bouscaut J; Corio-Costet MF; Mérillon JM
    J Agric Food Chem; 2008 Jul; 56(14):5781-7. PubMed ID: 18570435
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Mondello V; Fernandez O; Guise JF; Trotel-Aziz P; Fontaine F
    Front Plant Sci; 2021; 12():693995. PubMed ID: 34539689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. More years of field trials against Plasmopara viticola in organic viticolture.
    La Torre A; Spera G; Gianferro M; Scaglione M
    Commun Agric Appl Biol Sci; 2007; 72(4):901-8. PubMed ID: 18396827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vineyard evaluation of stilbenoid-rich grape cane extracts against downy mildew: a large-scale study.
    Billet K; Delanoue G; Arnault I; Besseau S; Oudin A; Courdavault V; Marchand PA; Giglioli-Guivarc'h N; Guérin L; Lanoue A
    Pest Manag Sci; 2019 May; 75(5):1252-1257. PubMed ID: 30324644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.