These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
393 related articles for article (PubMed ID: 29458072)
41. Isolation and identification of entomopathogenic nematodes and their symbiotic bacteria from Hérault and Gard (Southern France). Emelianoff V; Le Brun N; Pagès S; Stock SP; Tailliez P; Moulia C; Sicard M J Invertebr Pathol; 2008 Jun; 98(2):211-7. PubMed ID: 18353356 [TBL] [Abstract][Full Text] [Related]
42. Differential Change Patterns of Main Antimicrobial Peptide Genes During Infection of Entomopathogenic Nematodes and Their Symbiotic Bacteria. Darsouei R; Karimi J; Ghadamyari M; Hosseini M J Parasitol; 2017 Aug; 103(4):349-358. PubMed ID: 28395586 [TBL] [Abstract][Full Text] [Related]
43. Comparative Analysis of Xenorhabdus koppenhoeferi Gene Expression during Symbiotic Persistence in the Host Nematode. An R; Grewal PS PLoS One; 2016; 11(1):e0145739. PubMed ID: 26745883 [TBL] [Abstract][Full Text] [Related]
44. Apex Predator Nematodes and Meso-Predator Bacteria Consume Their Basal Insect Prey through Discrete Stages of Chemical Transformations. Mucci NC; Jones KA; Cao M; Wyatt MR; Foye S; Kauffman SJ; Richards GR; Taufer M; Chikaraishi Y; Steffan SA; Campagna SR; Goodrich-Blair H mSystems; 2022 Jun; 7(3):e0031222. PubMed ID: 35543104 [TBL] [Abstract][Full Text] [Related]
45. Pathogenicity of bacterium, Xenorhabdus nematophila isolated from entomopathogenic nematode (Steinernema carpocapsae) and its secretion against Galleria mellonella larvae. Mahar AN; Munir M; Elawad S; Gowen SR; Hague NG J Zhejiang Univ Sci B; 2005 Jun; 6(6):457-63. PubMed ID: 15909327 [TBL] [Abstract][Full Text] [Related]
46. Microbial population dynamics in the hemolymph of Manduca sexta infected with Xenorhabdus nematophila and the entomopathogenic nematode Steinernema carpocapsae. Singh S; Reese JM; Casanova-Torres AM; Goodrich-Blair H; Forst S Appl Environ Microbiol; 2014 Jul; 80(14):4277-85. PubMed ID: 24814780 [TBL] [Abstract][Full Text] [Related]
47. Pathogenicity, development, and reproduction of Heterorhabditis bacteriophora and Steinernema carpocapsae under axenic in vivo conditions. Han R; Ehlers RU J Invertebr Pathol; 2000 Jan; 75(1):55-8. PubMed ID: 10631058 [TBL] [Abstract][Full Text] [Related]
48. Xenorhabdus nematophila bacteria shift from mutualistic to virulent Lrp-dependent phenotypes within the receptacles of Steinernema carpocapsae insect-infective stage nematodes. Cao M; Goodrich-Blair H Environ Microbiol; 2020 Dec; 22(12):5433-5449. PubMed ID: 33078552 [TBL] [Abstract][Full Text] [Related]
49. Life history trait analysis of the entomopathogenic nematode Steinernema feltiae provides the basis for prediction of dauer juvenile yields in monoxenic liquid culture. Addis T; Teshome A; Strauch O; Ehlers RU Appl Microbiol Biotechnol; 2016 May; 100(10):4357-66. PubMed ID: 26701359 [TBL] [Abstract][Full Text] [Related]
50. Attenuated virulence and genomic reductive evolution in the entomopathogenic bacterial symbiont species, Xenorhabdus poinarii. Ogier JC; Pagès S; Bisch G; Chiapello H; Médigue C; Rouy Z; Teyssier C; Vincent S; Tailliez P; Givaudan A; Gaudriault S Genome Biol Evol; 2014 Jun; 6(6):1495-513. PubMed ID: 24904010 [TBL] [Abstract][Full Text] [Related]
51. Genome Sequence Analysis of Native Palma L; Frizzo L; Kaiser S; Berry C; Caballero P; Bode HB; Del Valle EE Toxins (Basel); 2024 Feb; 16(2):. PubMed ID: 38393187 [TBL] [Abstract][Full Text] [Related]
52. Morphology and ultrastructure of the bacterial receptacle in Steinernema nematodes (Nematoda: Steinernematidae). Kim SK; Flores-Lara Y; Patricia Stock S J Invertebr Pathol; 2012 Jul; 110(3):366-74. PubMed ID: 22564260 [TBL] [Abstract][Full Text] [Related]
53. Effect of Photorhabdus luminescens phase variants on the in vivo and in vitro development and reproduction of the entomopathogenic nematodes Heterorhabditis bacteriophora and Steinernema carpocapsae. Han R; Ehlers R FEMS Microbiol Ecol; 2001 May; 35(3):239-247. PubMed ID: 11311434 [TBL] [Abstract][Full Text] [Related]
54. Nematobacterial Complexes and Insect Hosts: Different Weapons for the Same War. Brivio MF; Mastore M Insects; 2018 Sep; 9(3):. PubMed ID: 30208626 [TBL] [Abstract][Full Text] [Related]
55. Symbiont-mediated competition: Xenorhabdus bovienii confer an advantage to their nematode host Steinernema affine by killing competitor Steinernema feltiae. Murfin KE; Ginete DR; Bashey F; Goodrich-Blair H Environ Microbiol; 2018 May; ():. PubMed ID: 29799156 [TBL] [Abstract][Full Text] [Related]
56. The prophenoloxidase system in Drosophila participates in the anti-nematode immune response. Cooper D; Wuebbolt C; Heryanto C; Eleftherianos I Mol Immunol; 2019 May; 109():88-98. PubMed ID: 30909122 [TBL] [Abstract][Full Text] [Related]
57. They've got a ticket to ride: Xenorhabdus nematophila-Steinernema carpocapsae symbiosis. Goodrich-Blair H Curr Opin Microbiol; 2007 Jun; 10(3):225-30. PubMed ID: 17553732 [TBL] [Abstract][Full Text] [Related]
58. Microbial control of diamondback moth, Plutella xylostella L. (Lepidoptera: Yponomeutidae) using bacteria (Xenorhabdus nematophila) and its metabolites from the entomopathogenic nematode Steinernema carpocapsae. Mahar AN; Munir M; Elawad S; Gowen SR; Hague NG J Zhejiang Univ Sci; 2004 Oct; 5(10):1183-90. PubMed ID: 15362188 [TBL] [Abstract][Full Text] [Related]