These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 29458326)

  • 21. Thiol peroxidase deficiency leads to increased mutational load and decreased fitness in Saccharomyces cerevisiae.
    Kaya A; Lobanov AV; Gerashchenko MV; Koren A; Fomenko DE; Koc A; Gladyshev VN
    Genetics; 2014 Nov; 198(3):905-17. PubMed ID: 25173844
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of the biological activity of a novel 24-membered macrolide JBIR-19 in Saccharomyces cerevisiae by the morphological imaging program CalMorph.
    Ohnuki S; Kobayashi T; Ogawa H; Kozone I; Ueda JY; Takagi M; Shin-Ya K; Hirata D; Nogami S; Ohya Y
    FEMS Yeast Res; 2012 May; 12(3):293-304. PubMed ID: 22129199
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SIR2 and other genes are abundantly expressed in long-lived natural segregants for replicative aging of the budding yeast Saccharomyces cerevisiae.
    Guo Z; Adomas AB; Jackson ED; Qin H; Townsend JP
    FEMS Yeast Res; 2011 Jun; 11(4):345-55. PubMed ID: 21306556
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional Profiling Using the Saccharomyces Genome Deletion Project Collections.
    Nislow C; Wong LH; Lee AH; Giaever G
    Cold Spring Harb Protoc; 2016 Sep; 2016(9):. PubMed ID: 27587776
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome-wide identification of the targets for genetic manipulation to improve L-lactate production by Saccharomyces cerevisiae by using a single-gene deletion strain collection.
    Hirasawa T; Takekuni M; Yoshikawa K; Ookubo A; Furusawa C; Shimizu H
    J Biotechnol; 2013 Oct; 168(2):185-93. PubMed ID: 23665193
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Essential gene disruptions reveal complex relationships between phenotypic robustness, pleiotropy, and fitness.
    Bauer CR; Li S; Siegal ML
    Mol Syst Biol; 2015 Jan; 11(1):773. PubMed ID: 25609648
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetic dissection of transcriptional regulation in budding yeast.
    Brem RB; Yvert G; Clinton R; Kruglyak L
    Science; 2002 Apr; 296(5568):752-5. PubMed ID: 11923494
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Introns regulate RNA and protein abundance in yeast.
    Juneau K; Miranda M; Hillenmeyer ME; Nislow C; Davis RW
    Genetics; 2006 Sep; 174(1):511-8. PubMed ID: 16816425
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting quantitative genetic interactions by means of sequential matrix approximation.
    Järvinen AP; Hiissa J; Elo LL; Aittokallio T
    PLoS One; 2008 Sep; 3(9):e3284. PubMed ID: 18818762
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Post-translocational adaptation drives evolution through genetic selection and transcriptional shift in Saccharomyces cerevisiae.
    Tosato V; Sims J; West N; Colombin M; Bruschi CV
    Curr Genet; 2017 May; 63(2):281-292. PubMed ID: 27491680
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of mating in the budding yeast Saccharomyces cerevisiae by the zinc cluster proteins Sut1 and Sut2.
    Blanda C; Höfken T
    Biochem Biophys Res Commun; 2013 Aug; 438(1):66-70. PubMed ID: 23872066
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome-wide analysis of yeast aging.
    Sutphin GL; Olsen BA; Kennedy BK; Kaeberlein M
    Subcell Biochem; 2012; 57():251-89. PubMed ID: 22094426
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome-wide expression monitoring in Saccharomyces cerevisiae.
    Wodicka L; Dong H; Mittmann M; Ho MH; Lockhart DJ
    Nat Biotechnol; 1997 Dec; 15(13):1359-67. PubMed ID: 9415887
    [TBL] [Abstract][Full Text] [Related]  

  • 34. From yeast to hypha: defining transcriptomic signatures of the morphological switch in the dimorphic fungal pathogen Ophiostoma novo-ulmi.
    Nigg M; Bernier L
    BMC Genomics; 2016 Nov; 17(1):920. PubMed ID: 27846799
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adaptation of Saccharomyces cerevisiae to saline stress through laboratory evolution.
    Dhar R; Sägesser R; Weikert C; Yuan J; Wagner A
    J Evol Biol; 2011 May; 24(5):1135-53. PubMed ID: 21375649
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lack of 14-3-3 proteins in Saccharomyces cerevisiae results in cell-to-cell heterogeneity in the expression of Pho4-regulated genes SPL2 and PHO84.
    Teunissen JHM; Crooijmans ME; Teunisse PPP; van Heusden GPH
    BMC Genomics; 2017 Sep; 18(1):701. PubMed ID: 28877665
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gene duplication and the evolution of ribosomal protein gene regulation in yeast.
    Wapinski I; Pfiffner J; French C; Socha A; Thompson DA; Regev A
    Proc Natl Acad Sci U S A; 2010 Mar; 107(12):5505-10. PubMed ID: 20212107
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative analysis of regulatory transcription factors in Schizosaccharomyces pombe and budding yeasts.
    Beskow A; Wright AP
    Yeast; 2006 Oct; 23(13):929-35. PubMed ID: 17072884
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of genome duplication on phenotypes and industrial applications of Saccharomyces cerevisiae strains.
    Zhang K; Fang YH; Gao KH; Sui Y; Zheng DQ; Wu XC
    Appl Microbiol Biotechnol; 2017 Jul; 101(13):5405-5414. PubMed ID: 28429058
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The morphology of Saccharomyces cerevisiae colonies is affected by cell adhesion and the budding pattern.
    Vopálenská I; Hůlková M; Janderová B; Palková Z
    Res Microbiol; 2005 Nov; 156(9):921-31. PubMed ID: 16081250
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.