These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 29458597)
1. Detonation Nanodiamonds as a New Tool for Phenol Detection in Aqueous Medium. Ronzhin N; Puzyr A; Bondar V J Nanosci Nanotechnol; 2018 Aug; 18(8):5448-5453. PubMed ID: 29458597 [TBL] [Abstract][Full Text] [Related]
2. Effect of Surface Chemistry on the Fluorescence of Detonation Nanodiamonds. Reineck P; Lau DWM; Wilson ER; Fox K; Field MR; Deeleepojananan C; Mochalin VN; Gibson BC ACS Nano; 2017 Nov; 11(11):10924-10934. PubMed ID: 29088544 [TBL] [Abstract][Full Text] [Related]
3. Reusable System for Phenol Detection in an Aqueous Medium Based on Nanodiamonds and Extracellular Oxidase from Basidiomycete Neonothopanus nambi. Ronzhin NO; Mogilnaya OA; Posokhina ED; Bondar VS Dokl Biochem Biophys; 2021 Jul; 499(1):220-224. PubMed ID: 34426915 [TBL] [Abstract][Full Text] [Related]
4. Aggregation behavior of nanodiamonds and their functionalized analogs in an aqueous environment. Desai C; Chen K; Mitra S Environ Sci Process Impacts; 2014 Mar; 16(3):518-23. PubMed ID: 24352711 [TBL] [Abstract][Full Text] [Related]
5. Detonation nanodiamonds are promising nontoxic delivery system for urothelial cells. Zupančič D; Kreft ME; Grdadolnik M; Mitev D; Iglič A; Veranič P Protoplasma; 2018 Jan; 255(1):419-423. PubMed ID: 28741141 [TBL] [Abstract][Full Text] [Related]
6. Gram-scale fractionation of nanodiamonds by density gradient ultracentrifugation. Peng W; Mahfouz R; Pan J; Hou Y; Beaujuge PM; Bakr OM Nanoscale; 2013 Jun; 5(11):5017-26. PubMed ID: 23636671 [TBL] [Abstract][Full Text] [Related]
8. High-yield fabrication and properties of 1.4 nm nanodiamonds with narrow size distribution. Stehlik S; Varga M; Ledinsky M; Miliaieva D; Kozak H; Skakalova V; Mangler C; Pennycook TJ; Meyer JC; Kromka A; Rezek B Sci Rep; 2016 Dec; 6():38419. PubMed ID: 27910924 [TBL] [Abstract][Full Text] [Related]
9. Hydroxylation and self-assembly of colloidal hydrogenated nanodiamonds by aqueous oxygen radicals from atmospheric pressure plasma jet. Jirásek V; Stehlík Š; Štenclová P; Artemenko A; Rezek B; Kromka A RSC Adv; 2018 Nov; 8(66):37681-37692. PubMed ID: 35558630 [TBL] [Abstract][Full Text] [Related]
10. Facile synthesis of novel magnetic silica nanoparticles functionalized with layer-by-layer detonation nanodiamonds for secretome study. Li H; Wang Y; Zhang L; Lu H; Zhou Z; Wei L; Yang P Analyst; 2015 Dec; 140(23):7886-95. PubMed ID: 26468487 [TBL] [Abstract][Full Text] [Related]
11. Effect of Particle Sizes on the Efficiency of Fluorinated Nanodiamond Neutron Reflectors. Aleksenskii A; Bleuel M; Bosak A; Chumakova A; Dideikin A; Dubois M; Korobkina E; Lychagin E; Muzychka A; Nekhaev G; Nesvizhevsky V; Nezvanov A; Schweins R; Shvidchenko A; Strelkov A; Turlybekuly K; Vul' A; Zhernenkov K Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835831 [TBL] [Abstract][Full Text] [Related]
12. Detonation nanodiamonds for rapid detection of clinical isolates of Mycobacterium tuberculosis complex in broth culture media. Soo PC; Kung CJ; Horng YT; Chang KC; Lee JJ; Peng WP Anal Chem; 2012 Sep; 84(18):7972-8. PubMed ID: 22905748 [TBL] [Abstract][Full Text] [Related]
13. Biodistribution of Different Sized Nanodiamonds in Mice. Purtov K; Petunin A; Inzhevatkin E; Burov A; Ronzhin N; Puzyr A; Bondar V J Nanosci Nanotechnol; 2015 Feb; 15(2):1070-5. PubMed ID: 26353614 [TBL] [Abstract][Full Text] [Related]
14. A simple and soft chemical deaggregation method producing single-digit detonation nanodiamonds. Terada D; So FTK; Hattendorf B; Yanagi T; Ōsawa E; Mizuochi N; Shirakawa M; Igarashi R; Segawa TF Nanoscale Adv; 2022 May; 4(10):2268-2277. PubMed ID: 36133696 [TBL] [Abstract][Full Text] [Related]
16. The effect of salt and particle concentration on the dynamic self-assembly of detonation nanodiamonds in water. El-Demrdash SA; Nixon-Luke R; Thomsen L; Tadich A; Lau DWM; Chang SLY; Greaves TL; Bryant G; Reineck P Nanoscale; 2021 Sep; 13(33):14110-14118. PubMed ID: 34477692 [TBL] [Abstract][Full Text] [Related]
17. Unusual catalytic effects of iron salts on phenol degradation by glow discharge plasma in aqueous solution. Wang L; Jiang X J Hazard Mater; 2009 Jan; 161(2-3):926-32. PubMed ID: 18501506 [TBL] [Abstract][Full Text] [Related]
18. Optical limiting properties of surface functionalized nanodiamonds probed by the Z-scan method. Muller O; Pichot V; Merlat L; Spitzer D Sci Rep; 2019 Jan; 9(1):519. PubMed ID: 30679574 [TBL] [Abstract][Full Text] [Related]
19. Biocompatibility Assessment of Detonation Nanodiamond in Non-Human Primates and Rats Using Histological, Hematologic, and Urine Analysis. Moore L; Yang J; Lan TT; Osawa E; Lee DK; Johnson WD; Xi J; Chow EK; Ho D ACS Nano; 2016 Aug; 10(8):7385-400. PubMed ID: 27439019 [TBL] [Abstract][Full Text] [Related]
20. Electrochemical and FTIR studies of the mutual influence of lead(II) or iron(III) and phenol on their adsorption from aqueous acid solution by modified activated carbons. Pakuła M; Walczyk M; Biniak S; Swiatkowski A Chemosphere; 2007 Sep; 69(2):209-19. PubMed ID: 17553547 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]