BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 29458655)

  • 1. DL-endopeptidases function as both cell wall hydrolases and poly-γ-glutamic acid hydrolases.
    Fukushima T; Uchida N; Ide M; Kodama T; Sekiguchi J
    Microbiology (Reading); 2018 Mar; 164(3):277-286. PubMed ID: 29458655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and characterization of novel cell wall hydrolase CwlT: a two-domain autolysin exhibiting n-acetylmuramidase and DL-endopeptidase activities.
    Fukushima T; Kitajima T; Yamaguchi H; Ouyang Q; Furuhata K; Yamamoto H; Shida T; Sekiguchi J
    J Biol Chem; 2008 Apr; 283(17):11117-25. PubMed ID: 18305117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic lethality of the lytE cwlO genotype in Bacillus subtilis is caused by lack of D,L-endopeptidase activity at the lateral cell wall.
    Hashimoto M; Ooiwa S; Sekiguchi J
    J Bacteriol; 2012 Feb; 194(4):796-803. PubMed ID: 22139507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptidoglycan hydrolase LytF plays a role in cell separation with CwlF during vegetative growth of Bacillus subtilis.
    Ohnishi R; Ishikawa S; Sekiguchi J
    J Bacteriol; 1999 May; 181(10):3178-84. PubMed ID: 10322020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Digestion of peptidoglycan near the cross-link is necessary for the growth of Bacillus subtilis.
    Hashimoto M; Matsushima H; Suparthana IP; Ogasawara H; Yamamoto H; Teng C; Sekiguchi J
    Microbiology (Reading); 2018 Mar; 164(3):299-307. PubMed ID: 29458657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disruption of the cell wall lytic enzyme CwlO affects the amount and molecular size of poly-γ-glutamic acid produced by Bacillus subtilis (natto).
    Mitsui N; Murasawa H; Sekiguchi J
    J Gen Appl Microbiol; 2011; 57(1):35-43. PubMed ID: 21478646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Post-translational control of vegetative cell separation enzymes through a direct interaction with specific inhibitor IseA in Bacillus subtilis.
    Yamamoto H; Hashimoto M; Higashitsuji Y; Harada H; Hariyama N; Takahashi L; Iwashita T; Ooiwa S; Sekiguchi J
    Mol Microbiol; 2008 Oct; 70(1):168-82. PubMed ID: 18761694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution scattering study of the Bacillus subtilis PgdS enzyme involved in poly-γ-glutamic acids degradation.
    Zeng J; Jin Y; Liu Z
    PLoS One; 2018; 13(4):e0195355. PubMed ID: 29608608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel poly-gamma-glutamate-processing enzyme catalyzing gamma-glutamyl DD-amidohydrolysis.
    Ashiuchi M; Nakamura H; Yamamoto M; Misono H
    J Biosci Bioeng; 2006 Jul; 102(1):60-5. PubMed ID: 16952838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution structure of IseA, an inhibitor protein of DL-endopeptidases from Bacillus subtilis, reveals a novel fold with a characteristic inhibitory loop.
    Arai R; Fukui S; Kobayashi N; Sekiguchi J
    J Biol Chem; 2012 Dec; 287(53):44736-48. PubMed ID: 23091053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new D,L-endopeptidase gene product, YojL (renamed CwlS), plays a role in cell separation with LytE and LytF in Bacillus subtilis.
    Fukushima T; Afkham A; Kurosawa S; Tanabe T; Yamamoto H; Sekiguchi J
    J Bacteriol; 2006 Aug; 188(15):5541-50. PubMed ID: 16855244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the Bacillus subtilis ywtD gene, whose product is involved in gamma-polyglutamic acid degradation.
    Suzuki T; Tahara Y
    J Bacteriol; 2003 Apr; 185(7):2379-82. PubMed ID: 12644511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The WalR-WalK Signaling Pathway Modulates the Activities of both CwlO and LytE through Control of the Peptidoglycan Deacetylase PdaC in Bacillus subtilis.
    Dobihal GS; Flores-Kim J; Roney IJ; Wang X; Rudner DZ
    J Bacteriol; 2022 Feb; 204(2):e0053321. PubMed ID: 34871030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into Substrate Specificity of NlpC/P60 Cell Wall Hydrolases Containing Bacterial SH3 Domains.
    Xu Q; Mengin-Lecreulx D; Liu XW; Patin D; Farr CL; Grant JC; Chiu HJ; Jaroszewski L; Knuth MW; Godzik A; Lesley SA; Elsliger MA; Deacon AM; Wilson IA
    mBio; 2015 Sep; 6(5):e02327-14. PubMed ID: 26374125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPRi-Based Dynamic Regulation of Hydrolase for the Synthesis of Poly-γ-Glutamic Acid with Variable Molecular Weights.
    Sha Y; Qiu Y; Zhu Y; Sun T; Luo Z; Gao J; Feng X; Li S; Xu H
    ACS Synth Biol; 2020 Sep; 9(9):2450-2459. PubMed ID: 32794764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient Biosynthesis of Low-Molecular-Weight Poly-γ-glutamic Acid by Stable Overexpression of PgdS Hydrolase in Bacillus amyloliquefaciens NB.
    Sha Y; Zhang Y; Qiu Y; Xu Z; Li S; Feng X; Wang M; Xu H
    J Agric Food Chem; 2019 Jan; 67(1):282-290. PubMed ID: 30543111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural insights into the regulation of peptidoglycan DL-endopeptidases by inhibitory protein IseA.
    Tandukar S; Kwon E; Kim DY
    Structure; 2023 May; 31(5):619-628.e4. PubMed ID: 36963396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization of the vegetative cell wall hydrolases LytC, LytE, and LytF on the Bacillus subtilis cell surface and stability of these enzymes to cell wall-bound or extracellular proteases.
    Yamamoto H; Kurosawa S; Sekiguchi J
    J Bacteriol; 2003 Nov; 185(22):6666-77. PubMed ID: 14594841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Knockout of pgdS and ggt genes improves γ-PGA yield in B. subtilis.
    Scoffone V; Dondi D; Biino G; Borghese G; Pasini D; Galizzi A; Calvio C
    Biotechnol Bioeng; 2013 Jul; 110(7):2006-12. PubMed ID: 23335395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic characterization and related functional genes of γ- poly glutamic acid producing Bacillus subtilis.
    Zhu J; Wang X; Zhao J; Ji F; Zeng J; Wei Y; Xu L; Dong G; Ma X; Wang C
    BMC Microbiol; 2024 Apr; 24(1):125. PubMed ID: 38622505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.