BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 29458727)

  • 1. Ineffective Erythropoiesis: Anemia and Iron Overload.
    Gupta R; Musallam KM; Taher AT; Rivella S
    Hematol Oncol Clin North Am; 2018 Apr; 32(2):213-221. PubMed ID: 29458727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modified activin receptor IIB ligand trap mitigates ineffective erythropoiesis and disease complications in murine β-thalassemia.
    Suragani RN; Cawley SM; Li R; Wallner S; Alexander MJ; Mulivor AW; Gardenghi S; Rivella S; Grinberg AV; Pearsall RS; Kumar R
    Blood; 2014 Jun; 123(25):3864-72. PubMed ID: 24795345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. mRNA expression of iron regulatory genes in beta-thalassemia intermedia and beta-thalassemia major mouse models.
    Weizer-Stern O; Adamsky K; Amariglio N; Rachmilewitz E; Breda L; Rivella S; Rechavi G
    Am J Hematol; 2006 Jul; 81(7):479-83. PubMed ID: 16755567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peroxiredoxin-2: A Novel Regulator of Iron Homeostasis in Ineffective Erythropoiesis.
    Matte A; De Falco L; Federti E; Cozzi A; Iolascon A; Levi S; Mohandas N; Zamo A; Bruno M; Lebouef C; Janin A; Siciliano A; Ganz T; Federico G; Carlomagno F; Mueller S; Silva I; Carbone C; Melisi D; Kim DW; Choi SY; De Franceschi L
    Antioxid Redox Signal; 2018 Jan; 28(1):1-14. PubMed ID: 28793778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decreasing TfR1 expression reverses anemia and hepcidin suppression in β-thalassemic mice.
    Li H; Choesang T; Bao W; Chen H; Feola M; Garcia-Santos D; Li J; Sun S; Follenzi A; Pham P; Liu J; Zhang J; Ponka P; An X; Mohandas N; Fleming RE; Rivella S; Li G; Ginzburg YZ
    Blood; 2017 Mar; 129(11):1514-1526. PubMed ID: 28151426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systemic iron homeostasis and erythropoiesis.
    Papanikolaou G; Pantopoulos K
    IUBMB Life; 2017 Jun; 69(6):399-413. PubMed ID: 28387022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exogenous iron increases hemoglobin in beta-thalassemic mice.
    Ginzburg YZ; Rybicki AC; Suzuka SM; Hall CB; Breuer W; Cabantchik ZI; Bouhassira EE; Fabry ME; Nagel RL
    Exp Hematol; 2009 Feb; 37(2):172-83. PubMed ID: 19059700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ineffective erythropoiesis and regulation of iron status in iron loading anaemias.
    Camaschella C; Nai A
    Br J Haematol; 2016 Feb; 172(4):512-23. PubMed ID: 26491866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Interplay Between Peroxiredoxin-2 and Nuclear Factor-Erythroid 2 Is Important in Limiting Oxidative Mediated Dysfunction in β-Thalassemic Erythropoiesis.
    Matte A; De Falco L; Iolascon A; Mohandas N; An X; Siciliano A; Leboeuf C; Janin A; Bruno M; Choi SY; Kim DW; De Franceschi L
    Antioxid Redox Signal; 2015 Dec; 23(16):1284-97. PubMed ID: 26058667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Erythroferrone exacerbates iron overload and ineffective extramedullary erythropoiesis in a mouse model of β-thalassemia.
    Olivera J; Zhang V; Nemeth E; Ganz T
    Blood Adv; 2023 Jul; 7(14):3339-3349. PubMed ID: 36995275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reciprocal regulation between hepcidin and erythropoiesis and its therapeutic application in erythroid disorders.
    Wang C; Fang Z; Zhu Z; Liu J; Chen H
    Exp Hematol; 2017 Aug; 52():24-31. PubMed ID: 28501597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth differentiation factor 15 in erythroid health and disease.
    Tanno T; Noel P; Miller JL
    Curr Opin Hematol; 2010 May; 17(3):184-90. PubMed ID: 20182355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron age: novel targets for iron overload.
    Casu C; Rivella S
    Hematology Am Soc Hematol Educ Program; 2014 Dec; 2014(1):216-21. PubMed ID: 25696858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anemia, ineffective erythropoiesis, and hepcidin: interacting factors in abnormal iron metabolism leading to iron overload in β-thalassemia.
    Gardenghi S; Grady RW; Rivella S
    Hematol Oncol Clin North Am; 2010 Dec; 24(6):1089-107. PubMed ID: 21075282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transferrin receptor 2 is a potential novel therapeutic target for β-thalassemia: evidence from a murine model.
    Artuso I; Lidonnici MR; Altamura S; Mandelli G; Pettinato M; Muckenthaler MU; Silvestri L; Ferrari G; Camaschella C; Nai A
    Blood; 2018 Nov; 132(21):2286-2297. PubMed ID: 30209118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron metabolism under conditions of ineffective erythropoiesis in β-thalassemia.
    Rivella S
    Blood; 2019 Jan; 133(1):51-58. PubMed ID: 30401707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tracking erythroid progenitor cells in times of need and times of plenty.
    Koury MJ
    Exp Hematol; 2016 Aug; 44(8):653-63. PubMed ID: 26646992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selenoproteins regulate stress erythroid progenitors and spleen microenvironment during stress erythropoiesis.
    Liao C; Hardison RC; Kennett MJ; Carlson BA; Paulson RF; Prabhu KS
    Blood; 2018 Jun; 131(23):2568-2580. PubMed ID: 29615406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hepcidin and Anemia: A Tight Relationship.
    Pagani A; Nai A; Silvestri L; Camaschella C
    Front Physiol; 2019; 10():1294. PubMed ID: 31649559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hepcidin.
    Ganz T
    Rinsho Ketsueki; 2016; 57(10):1913-1917. PubMed ID: 27725588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.