These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 29458756)

  • 1. Kinetic Analysis of the Exonuclease Activity of the Bacteriophage T4 Mre11-Rad50 Complex.
    Teklemariam TA; Rivera OD; Nelson SW
    Methods Enzymol; 2018; 600():135-156. PubMed ID: 29458756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical characterization of bacteriophage T4 Mre11-Rad50 complex.
    Herdendorf TJ; Albrecht DW; Benkovic SJ; Nelson SW
    J Biol Chem; 2011 Jan; 286(4):2382-92. PubMed ID: 21081488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coordination and processing of DNA ends during double-strand break repair: the role of the bacteriophage T4 Mre11/Rad50 (MR) complex.
    Almond JR; Stohr BA; Panigrahi AK; Albrecht DW; Nelson SW; Kreuzer KN
    Genetics; 2013 Nov; 195(3):739-55. PubMed ID: 23979587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional evaluation of the C-terminal region of bacteriophage T4 Rad50.
    Streff HE; Gao Y; Nelson SW
    Biochem Biophys Res Commun; 2020 May; 526(2):485-490. PubMed ID: 32238267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional Analysis of the Bacteriophage T4 Rad50 Homolog (gp46) Coiled-coil Domain.
    Barfoot T; Herdendorf TJ; Behning BR; Stohr BA; Gao Y; Kreuzer KN; Nelson SW
    J Biol Chem; 2015 Sep; 290(39):23905-15. PubMed ID: 26242734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic mechanism of bacteriophage T4 Rad50 ATP hydrolysis.
    Herdendorf TJ; Nelson SW
    Biochemistry; 2014 Sep; 53(35):5647-60. PubMed ID: 25137526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disruption of the bacteriophage T4 Mre11 dimer interface reveals a two-state mechanism for exonuclease activity.
    Albrecht DW; Herdendorf TJ; Nelson SW
    J Biol Chem; 2012 Sep; 287(37):31371-81. PubMed ID: 22798142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stopped-flow fluorescence study of precatalytic primer strand base-unstacking transitions in the exonuclease cleft of bacteriophage T4 DNA polymerase.
    Otto MR; Bloom LB; Goodman MF; Beechem JM
    Biochemistry; 1998 Jul; 37(28):10156-63. PubMed ID: 9665721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A network of allosterically coupled residues in the bacteriophage T4 Mre11-Rad50 complex.
    Gao Y; Meyer JR; Nelson SW
    Protein Sci; 2016 Nov; 25(11):2054-2065. PubMed ID: 27571435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autoinhibition of bacteriophage T4 Mre11 by its C-terminal domain.
    Gao Y; Nelson SW
    J Biol Chem; 2014 Sep; 289(38):26505-26513. PubMed ID: 25077970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exonuclease-polymerase active site partitioning of primer-template DNA strands and equilibrium Mg2+ binding properties of bacteriophage T4 DNA polymerase.
    Beechem JM; Otto MR; Bloom LB; Eritja R; Reha-Krantz LJ; Goodman MF
    Biochemistry; 1998 Jul; 37(28):10144-55. PubMed ID: 9665720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the Okazaki fragment distributions along single long DNAs replicated by the bacteriophage T4 proteins.
    Chastain PD; Makhov AM; Nossal NG; Griffith JD
    Mol Cell; 2000 Oct; 6(4):803-14. PubMed ID: 11090619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The 5'-exonuclease activity of bacteriophage T4 RNase H is stimulated by the T4 gene 32 single-stranded DNA-binding protein, but its flap endonuclease is inhibited.
    Bhagwat M; Hobbs LJ; Nossal NG
    J Biol Chem; 1997 Nov; 272(45):28523-30. PubMed ID: 9353314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of the 3'-5' exonuclease of the replicative T4 DNA polymerase allows translesion DNA synthesis at an abasic site.
    Tanguy Le Gac N; Delagoutte E; Germain M; Villani G
    J Mol Biol; 2004 Mar; 336(5):1023-34. PubMed ID: 15037066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic characterization of a bacteriophage T4 antimutator DNA polymerase.
    Wu P; Nossal N; Benkovic SJ
    Biochemistry; 1998 Oct; 37(42):14748-55. PubMed ID: 9778349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional evaluation of bacteriophage T4 Rad50 signature motif residues.
    Herdendorf TJ; Nelson SW
    Biochemistry; 2011 Jul; 50(27):6030-40. PubMed ID: 21675703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic parameters of the translocation of bacteriophage T4 gene 41 protein helicase on single-stranded DNA.
    Young MC; Schultz DE; Ring D; von Hippel PH
    J Mol Biol; 1994 Feb; 235(5):1447-58. PubMed ID: 8107085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional consequences and exonuclease kinetic parameters of point mutations in bacteriophage T4 DNA polymerase.
    Abdus Sattar AK; Lin TC; Jones C; Konigsberg WH
    Biochemistry; 1996 Dec; 35(51):16621-9. PubMed ID: 8987997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of the bacteriophage T4 Dda helicase by Gp32 single-stranded DNA-binding protein.
    Jordan CS; Morrical SW
    DNA Repair (Amst); 2015 Jan; 25():41-53. PubMed ID: 25481875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-stranded DNA binding properties of the uvsY recombination protein of bacteriophage T4.
    Sweezy MA; Morrical SW
    J Mol Biol; 1997 Mar; 266(5):927-38. PubMed ID: 9086271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.