BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 29458858)

  • 1. Monitoring biocalcification potential of Lysinibacillus sp. isolated from alluvial soils for improved compressive strength of concrete.
    Vashisht R; Attri S; Sharma D; Shukla A; Goel G
    Microbiol Res; 2018 Mar; 207():226-231. PubMed ID: 29458858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and identification of bacteria to improve the strength of concrete.
    Krishnapriya S; Venkatesh Babu DL; G PA
    Microbiol Res; 2015 May; 174():48-55. PubMed ID: 25946328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing ureolytic bacteria with calcifying abilities isolated from limestone caves for biocalcification.
    Omoregie AI; Ong DEL; Nissom PM
    Lett Appl Microbiol; 2019 Feb; 68(2):173-181. PubMed ID: 30537001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocementation of Concrete Pavements Using Microbially Induced Calcite Precipitation.
    Jeong JH; Jo YS; Park CS; Kang CH; So JS
    J Microbiol Biotechnol; 2017 Jul; 27(7):1331-1335. PubMed ID: 28478659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved strength and durability of concrete through metabolic activity of ureolytic bacteria.
    Alonso MJC; Ortiz CEL; Perez SOG; Narayanasamy R; Fajardo San Miguel GDJ; Hernández HH; Balagurusamy N
    Environ Sci Pollut Res Int; 2018 Aug; 25(22):21451-21458. PubMed ID: 28593545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-ureolytic calcium carbonate precipitation by Lysinibacillus sp. YS11 isolated from the rhizosphere of Miscanthus sacchariflorus.
    Lee YS; Kim HJ; Park W
    J Microbiol; 2017 Jun; 55(6):440-447. PubMed ID: 28551875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocalcification by Piezotolerant Bacillus sp. NIOTVJ5 Isolated from Deep Sea Sediment and its Influence on the Strength of Concrete Specimens.
    Rangamaran VR; Shanmugam VK
    Mar Biotechnol (NY); 2019 Apr; 21(2):161-170. PubMed ID: 30535928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcite-forming bacteria for compressive strength improvement in mortar.
    Park SJ; Park YM; Chun WY; Kim WJ; Ghim SY
    J Microbiol Biotechnol; 2010 Apr; 20(4):782-8. PubMed ID: 20467254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocalcification by halophilic bacteria for remediation of concrete structures in marine environment.
    Bansal R; Dhami NK; Mukherjee A; Reddy MS
    J Ind Microbiol Biotechnol; 2016 Nov; 43(11):1497-1505. PubMed ID: 27581442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strain Screening and Particle Formation: a Lysinibacillus boronitolerans for Self-Healing Concrete.
    Xu JM; Lu C; Wang WJ; Du ZY; Pan JJ; Cheng F; Wang YS; Liu ZQ; Zheng YG
    Appl Environ Microbiol; 2022 Sep; 88(18):e0080422. PubMed ID: 36036598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and identification of Pseudomonas azotoformans for induced calcite precipitation.
    Heidari Nonakaran S; Pazhouhandeh M; Keyvani A; Abdollahipour FZ; Shirzad A
    World J Microbiol Biotechnol; 2015 Dec; 31(12):1993-2001. PubMed ID: 26386580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vaterite induced by Lysinibacillus sp. GW-2 strain and its stability.
    Lv JJ; Ma F; Li FC; Zhang CH; Chen JN
    J Struct Biol; 2017 Nov; 200(2):97-105. PubMed ID: 28958863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacteria incorporated with calcium lactate pentahydrate to improve the mortar properties and self-healing occurrence.
    Chaerun SK; Syarif R; Wattimena RK
    Sci Rep; 2020 Oct; 10(1):17873. PubMed ID: 33087729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzyme-mediated biocalcification by a novel alkaliphilic Bacillus psychrodurans LC40 and its eco-friendly application as a biosealant for crack healing.
    Park M; Park S; Yoo JY; Kim Y; Lee KM; Hwang DY; Son HJ
    Sci Total Environ; 2022 Jan; 802():149841. PubMed ID: 34455282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance Evaluation of Bio Concrete by Cluster and Regression Analysis for Environment Protection.
    Shukla A; Gupta N; Singh KR; Kumar Verma P; Bajaj M; Khan AA; Ayalew F
    Comput Intell Neurosci; 2022; 2022():4411876. PubMed ID: 36093479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and Potential Biocementation of Calcite Precipitation Inducing Bacteria from Colombian Buildings.
    Montaño-Salazar SM; Lizarazo-Marriaga J; Brandão PFB
    Curr Microbiol; 2018 Mar; 75(3):256-265. PubMed ID: 29043388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strength and durability performance of modified cement-based concrete incorporated immobilized bacteria.
    Dhivakar Karthick M; Rampradheep GS; Shankar S
    Environ Sci Pollut Res Int; 2022 Mar; 29(15):21670-21681. PubMed ID: 34767176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of bacterial sporulation using economic nutrient for self-healing concrete.
    Ryu Y; Lee KE; Cha IT; Park W
    J Microbiol; 2020 Apr; 58(4):288-296. PubMed ID: 32103443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of two urease-producing and calcifying Bacillus spp. isolated from cement.
    Achal V; Mukherjee A; Reddy MS
    J Microbiol Biotechnol; 2010 Nov; 20(11):1571-6. PubMed ID: 21124064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites.
    Dhami NK; Reddy MS; Mukherjee A
    J Microbiol Biotechnol; 2013 May; 23(5):707-14. PubMed ID: 23648862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.