BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 29458858)

  • 21. Calcium Carbonate Precipitation by Bacillus and Sporosarcina Strains Isolated from Concrete and Analysis of the Bacterial Community of Concrete.
    Kim HJ; Eom HJ; Park C; Jung J; Shin B; Kim W; Chung N; Choi IG; Park W
    J Microbiol Biotechnol; 2016 Mar; 26(3):540-8. PubMed ID: 26699752
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bacillus megaterium mediated mineralization of calcium carbonate as biogenic surface treatment of green building materials.
    Dhami NK; Reddy MS; Mukherjee A
    World J Microbiol Biotechnol; 2013 Dec; 29(12):2397-406. PubMed ID: 23793943
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Overcoming the inhibitory effects of urea to improve the kinetics of microbial-induced calcium carbonate precipitation (MICCP) by Lysinibacillus sphaericus strain MB284.
    Rahmaninezhad SA; Houshmand M; Sadighi A; Ahmari K; Kamireddi D; Street RM; Farnam YA; Schauer CL; Najafi AR; Sales CM
    J Biosci Bioeng; 2024 Jul; 138(1):63-72. PubMed ID: 38614831
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Production of nanocalcite crystal by a urease producing halophilic strain of Staphylococcus saprophyticus and analysis of its properties by XRD and SEM.
    Ghezelbash GR; Haddadi M
    World J Microbiol Biotechnol; 2018 Nov; 34(12):174. PubMed ID: 30446832
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of urease and carbonic anhydrase producing bacteria and their role in calcite precipitation.
    Achal V; Pan X
    Curr Microbiol; 2011 Mar; 62(3):894-902. PubMed ID: 21046391
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biochemical process of ureolysis-based microbial CaCO
    Xu J; Wang X; Wang B
    Appl Microbiol Biotechnol; 2018 Apr; 102(7):3121-3132. PubMed ID: 29455387
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Complete genome sequence of Lysinibacillus sphaericus LMG 22257, a strain with ureolytic activity inducing calcium carbonate precipitation.
    Yan W; Xiao X; Zhang Y
    J Biotechnol; 2017 Mar; 246():33-35. PubMed ID: 28216100
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomineralization processes of calcite induced by bacteria isolated from marine sediments.
    Wei S; Cui H; Jiang Z; Liu H; He H; Fang N
    Braz J Microbiol; 2015 Jun; 46(2):455-64. PubMed ID: 26273260
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Formation of huntite by Lysinibacillus sp. GW-2 strain].
    Xu Q; Li F; Zhang C; Li X
    Wei Sheng Wu Xue Bao; 2015 May; 55(5):607-15. PubMed ID: 26259485
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomineralization in metakaolin modified cement mortar to improve its strength with lowered cement content.
    Li M; Zhu X; Mukherjee A; Huang M; Achal V
    J Hazard Mater; 2017 May; 329():178-184. PubMed ID: 28135655
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Calcium carbonate precipitation by strain Bacillus licheniformis AK01, newly isolated from loamy soil: a promising alternative for sealing cement-based materials.
    Vahabi A; Ramezanianpour AA; Sharafi H; Zahiri HS; Vali H; Noghabi KA
    J Basic Microbiol; 2015 Jan; 55(1):105-11. PubMed ID: 25590872
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microbially induced calcite precipitation performance of multiple landfill indigenous bacteria compared to a commercially available bacteria in porous media.
    Rajasekar A; Moy CKS; Wilkinson S; Sekar R
    PLoS One; 2021; 16(7):e0254676. PubMed ID: 34270610
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Subsurface Endospore-Forming Bacteria Possess Bio-Sealant Properties.
    Basha S; Lingamgunta LK; Kannali J; Gajula SK; Bandikari R; Dasari S; Dalavai V; Chinthala P; Gundala PB; Kutagolla P; Balaji VK
    Sci Rep; 2018 Apr; 8(1):6448. PubMed ID: 29691456
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biocalcification using B. pasteurii for strengthening brick masonry civil engineering structures.
    Raut SH; Sarode DD; Lele SS
    World J Microbiol Biotechnol; 2014 Jan; 30(1):191-200. PubMed ID: 23884843
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Current challenges and future directions for bacterial self-healing concrete.
    Lee YS; Park W
    Appl Microbiol Biotechnol; 2018 Apr; 102(7):3059-3070. PubMed ID: 29487987
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effective microbial calcite precipitation by a new mutant and precipitating regulation of extracellular urease.
    Li H; Song Y; Li Q; He J; Song Y
    Bioresour Technol; 2014 Sep; 167():269-75. PubMed ID: 24994684
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transformation of malathion by Lysinibacillus sp. isolated from soil.
    Singh B; Kaur J; Singh K
    Biotechnol Lett; 2012 May; 34(5):863-7. PubMed ID: 22476547
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete.
    Wang JY; Belie ND; Verstraete W
    J Ind Microbiol Biotechnol; 2012 Apr; 39(4):567-77. PubMed ID: 21927907
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Whole cell evaluation and the enzymatic kinetic study of urease from ureolytic bacteria affected by potentially toxic elements.
    Li W; Fishman A; Achal V
    Microbiol Res; 2022 Dec; 265():127208. PubMed ID: 36162147
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of Microorganism Sporosarcina pasteurii on the Hydration of Cement Paste.
    Lee JC; Lee CJ; Chun WY; Kim WJ; Chung CW
    J Microbiol Biotechnol; 2015 Aug; 25(8):1328-38. PubMed ID: 25876598
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.