These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 29458858)

  • 41. Effect of Microorganism Sporosarcina pasteurii on the Hydration of Cement Paste.
    Lee JC; Lee CJ; Chun WY; Kim WJ; Chung CW
    J Microbiol Biotechnol; 2015 Aug; 25(8):1328-38. PubMed ID: 25876598
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bacillus sphaericus LMG 22257 is physiologically suitable for self-healing concrete.
    Wang J; Jonkers HM; Boon N; De Belie N
    Appl Microbiol Biotechnol; 2017 Jun; 101(12):5101-5114. PubMed ID: 28365797
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biocalcification by Bacillus pasteurii urease: a novel application.
    Sarda D; Choonia HS; Sarode DD; Lele SS
    J Ind Microbiol Biotechnol; 2009 Aug; 36(8):1111-5. PubMed ID: 19415357
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterization of three antifungal calcite-forming bacteria, Arthrobacter nicotianae KNUC2100, Bacillus thuringiensis KNUC2103, and Stenotrophomonas maltophilia KNUC2106, derived from the Korean islands, Dokdo and their application on mortar.
    Park JM; Park SJ; Ghim SY
    J Microbiol Biotechnol; 2013 Sep; 23(9):1269-78. PubMed ID: 23727794
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A cost effective cultivation medium for biocalcification of Bacillus pasteurii KCTC 3558 and its effect on cement cubes properties.
    Yoosathaporn S; Tiangburanatham P; Bovonsombut S; Chaipanich A; Pathom-Aree W
    Microbiol Res; 2016; 186-187():132-8. PubMed ID: 27242150
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Applicability of recycled aggregates in concrete piles for soft soil improvement.
    Medeiros-Junior RA; Balestra CE; Lima MG
    Waste Manag Res; 2017 Jan; 35(1):56-64. PubMed ID: 27864371
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sustainable bio-bricks prepared with synthetic urine enabled by biomineralization reactions.
    Fang C; Mi T; Achal V
    Lett Appl Microbiol; 2021 Dec; 73(6):793-799. PubMed ID: 34606639
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Application of Bacillus subtilis 168 as a multifunctional agent for improvement of the durability of cement mortar.
    Park SJ; Park JM; Kim WJ; Ghim SY
    J Microbiol Biotechnol; 2012 Nov; 22(11):1568-74. PubMed ID: 23124349
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Lysinibacillus fluoroglycofenilyticus sp. nov., a bacterium isolated from fluoroglycofen contaminated soil.
    Cheng M; Zhang H; Zhang J; Hu G; Zhang J; He J; Huang X
    Antonie Van Leeuwenhoek; 2015 Jan; 107(1):157-64. PubMed ID: 25348875
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of calcifying bacteria on permeation properties of concrete structures.
    Achal V; Mukherjee A; Reddy MS
    J Ind Microbiol Biotechnol; 2011 Sep; 38(9):1229-34. PubMed ID: 21104104
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Impact of the immobilized Bacillus cereus MG708176 on the characteristics of the bio-based self-healing concrete.
    Reyad AM; Mokhtar G
    Sci Rep; 2023 Jan; 13(1):500. PubMed ID: 36627411
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaluation of Microencapsulation Techniques for MICP Bacterial Spores Applied in Self-Healing Concrete.
    Pungrasmi W; Intarasoontron J; Jongvivatsakul P; Likitlersuang S
    Sci Rep; 2019 Aug; 9(1):12484. PubMed ID: 31462752
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Lactose mother liquor as an alternative nutrient source for microbial concrete production by Sporosarcina pasteurii.
    Achal V; Mukherjee A; Basu PC; Reddy MS
    J Ind Microbiol Biotechnol; 2009 Mar; 36(3):433-8. PubMed ID: 19107535
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Therapeutic intervention and molecular characterizations of bacteriocin producing Lysinibacillus sp., nov., isolated from food sample.
    Ahmad V; Khan MS
    Pak J Pharm Sci; 2015 Jul; 28(4):1337-44. PubMed ID: 26142524
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Complementing urea hydrolysis and nitrate reduction for improved microbially induced calcium carbonate precipitation.
    Zhu X; Wang J; De Belie N; Boon N
    Appl Microbiol Biotechnol; 2019 Nov; 103(21-22):8825-8838. PubMed ID: 31637492
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Investigating mechanical properties and biocement application of CaCO
    Ekprasert J; Fongkaew I; Chainakun P; Kamngam R; Boonsuan W
    Sci Rep; 2020 Sep; 10(1):16137. PubMed ID: 32999379
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Isolation, differentiation and biodiversity of ureolytic bacteria of Qatari soil and their potential in microbially induced calcite precipitation (MICP) for soil stabilization.
    Bibi S; Oualha M; Ashfaq MY; Suleiman MT; Zouari N
    RSC Adv; 2018 Feb; 8(11):5854-5863. PubMed ID: 35539599
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Lysinibacillus mangiferahumi sp. nov., a new bacterium producing nematicidal volatiles.
    Yang LL; Huang Y; Liu J; Ma L; Mo MH; Li WJ; Yang FX
    Antonie Van Leeuwenhoek; 2012 Jun; 102(1):53-9. PubMed ID: 22367102
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bioremediation of Cd by microbially induced calcite precipitation.
    Kang CH; Han SH; Shin Y; Oh SJ; So JS
    Appl Biochem Biotechnol; 2014 Mar; 172(6):2907-15. PubMed ID: 24458656
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Application of microorganisms in concrete: a promising sustainable strategy to improve concrete durability.
    Wang J; Ersan YC; Boon N; De Belie N
    Appl Microbiol Biotechnol; 2016 Apr; 100(7):2993-3007. PubMed ID: 26896159
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.