BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 29458859)

  • 1. The opportunistic human fungal pathogen Candida albicans promotes the growth and proliferation of commensal Escherichia coli through an iron-responsive pathway.
    Li S; Yu X; Wu W; Chen DZ; Xiao M; Huang X
    Microbiol Res; 2018 Mar; 207():232-239. PubMed ID: 29458859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of Candida albicans Sfu1 in fission yeast complements the loss of the iron-regulatory transcription factor Fep1 and requires Tup co-repressors.
    Pelletier B; Mercier A; Durand M; Peter C; Jbel M; Beaudoin J; Labbé S
    Yeast; 2007 Oct; 24(10):883-900. PubMed ID: 17724773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron at the Centre of
    Fourie R; Kuloyo OO; Mochochoko BM; Albertyn J; Pohl CH
    Front Cell Infect Microbiol; 2018; 8():185. PubMed ID: 29922600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bypass of Dfi1 Regulation of Candida albicans Invasive Filamentation by Iron Limitation.
    Junier A; Weeks A; Alcaraz Y; Kumamoto CA
    mSphere; 2022 Feb; 7(1):e0077921. PubMed ID: 35107339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The protein kinase Ire1 has a Hac1-independent essential role in iron uptake and virulence of Candida albicans.
    Ramírez-Zavala B; Krüger I; Dunker C; Jacobsen ID; Morschhäuser J
    PLoS Pathog; 2022 Feb; 18(2):e1010283. PubMed ID: 35108336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Post-transcriptional regulation of the Sef1 transcription factor controls the virulence of Candida albicans in its mammalian host.
    Chen C; Noble SM
    PLoS Pathog; 2012; 8(11):e1002956. PubMed ID: 23133381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron acquisition from transferrin by Candida albicans depends on the reductive pathway.
    Knight SA; Vilaire G; Lesuisse E; Dancis A
    Infect Immun; 2005 Sep; 73(9):5482-92. PubMed ID: 16113264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulatory networks affected by iron availability in Candida albicans.
    Lan CY; Rodarte G; Murillo LA; Jones T; Davis RW; Dungan J; Newport G; Agabian N
    Mol Microbiol; 2004 Sep; 53(5):1451-69. PubMed ID: 15387822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of genetic determinants that modulate Candida albicans filamentation in the presence of bacteria.
    Fox SJ; Shelton BT; Kruppa MD
    PLoS One; 2013; 8(8):e71939. PubMed ID: 23951271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Csa2, a member of the Rbt5 protein family, is involved in the utilization of iron from human hemoglobin during Candida albicans hyphal growth.
    Okamoto-Shibayama K; Kikuchi Y; Kokubu E; Sato Y; Ishihara K
    FEMS Yeast Res; 2014 Jun; 14(4):674-7. PubMed ID: 24796871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Candida albicans Hap43 is a repressor induced under low-iron conditions and is essential for iron-responsive transcriptional regulation and virulence.
    Hsu PC; Yang CY; Lan CY
    Eukaryot Cell; 2011 Feb; 10(2):207-25. PubMed ID: 21131439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Candida albicans Oropharyngeal Infection Is an Exception to Iron-Based Nutritional Immunity.
    Solis NV; Wakade RS; Filler SG; Krysan DJ
    mBio; 2023 Apr; 14(2):e0009523. PubMed ID: 36912640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Escherichia coli enterobactin synthesis and uptake mutants are hypersensitive to an antimicrobial peptide that limits the availability of iron in addition to blocking Holliday junction resolution.
    Orchard SS; Rostron JE; Segall AM
    Microbiology (Reading); 2012 Feb; 158(Pt 2):547-559. PubMed ID: 22096151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Regulation of cell growth and filamentation in Candida albicans by high-affinity iron permeases Ftr1 and Ftr2].
    Du H; Zhu L
    Wei Sheng Wu Xue Bao; 2015 May; 55(5):579-86. PubMed ID: 26259482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A family of oligopeptide transporters is required for growth of Candida albicans on proteins.
    Reuss O; Morschhäuser J
    Mol Microbiol; 2006 May; 60(3):795-812. PubMed ID: 16629678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and functional characterization of a novel Candida albicans gene CaMNN5 that suppresses the iron-dependent growth defect of Saccharomyces cerevisiae aft1Delta mutant.
    Bai C; Chan FY; Wang Y
    Biochem J; 2005 Jul; 389(Pt 1):27-35. PubMed ID: 15725072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An iron homeostasis regulatory circuit with reciprocal roles in Candida albicans commensalism and pathogenesis.
    Chen C; Pande K; French SD; Tuch BB; Noble SM
    Cell Host Microbe; 2011 Aug; 10(2):118-35. PubMed ID: 21843869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interplay between transcriptional regulators and the SAGA chromatin modifying complex fine-tune iron homeostasis.
    Srivastav MK; Agarwal N; Poonia P; Natarajan K
    J Biol Chem; 2021 Jul; 297(1):100727. PubMed ID: 33933457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biphasic zinc compartmentalisation in a human fungal pathogen.
    Crawford AC; Lehtovirta-Morley LE; Alamir O; Niemiec MJ; Alawfi B; Alsarraf M; Skrahina V; Costa ACBP; Anderson A; Yellagunda S; Ballou ER; Hube B; Urban CF; Wilson D
    PLoS Pathog; 2018 May; 14(5):e1007013. PubMed ID: 29727465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accumulation of periplasmic enterobactin impairs the growth and morphology of Escherichia coli tolC mutants.
    Vega DE; Young KD
    Mol Microbiol; 2014 Feb; 91(3):508-21. PubMed ID: 24330203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.