These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 29458972)

  • 1. Tracking control of air-breathing hypersonic vehicles with non-affine dynamics via improved neural back-stepping design.
    Bu X; He G; Wang K
    ISA Trans; 2018 Apr; 75():88-100. PubMed ID: 29458972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved prescribed performance control for air-breathing hypersonic vehicles with unknown deadzone input nonlinearity.
    Wang Y; Hu J
    ISA Trans; 2018 Aug; 79():95-107. PubMed ID: 29789154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel prescribed performance neural control of a flexible air-breathing hypersonic vehicle with unknown initial errors.
    Bu X; Wu X; Zhu F; Huang J; Ma Z; Zhang R
    ISA Trans; 2015 Nov; 59():149-59. PubMed ID: 26456727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-order tracking differentiator based adaptive neural control of a flexible air-breathing hypersonic vehicle subject to actuators constraints.
    Bu X; Wu X; Tian M; Huang J; Zhang R; Ma Z
    ISA Trans; 2015 Sep; 58():237-47. PubMed ID: 26142218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fixed-time disturbance observer based fixed-time back-stepping control for an air-breathing hypersonic vehicle.
    Wang X; Guo J; Tang S; Qi S
    ISA Trans; 2019 May; 88():233-245. PubMed ID: 30583955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural adaptive control of air-breathing hypersonic vehicles robust to actuator dynamics.
    An H; Guo Z; Wang G; Wang C
    ISA Trans; 2021 Oct; 116():17-29. PubMed ID: 33509597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global neural dynamic surface tracking control of strict-feedback systems with application to hypersonic flight vehicle.
    Xu B; Yang C; Pan Y
    IEEE Trans Neural Netw Learn Syst; 2015 Oct; 26(10):2563-75. PubMed ID: 26259222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive actuator fault-tolerant control for non-minimum phase air-breathing hypersonic vehicle model.
    Wang L; Qi R; Jiang B
    ISA Trans; 2022 Jul; 126():47-64. PubMed ID: 34334181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fuzzy-approximation-based prescribed performance control of air-breathing hypersonic vehicles with input constraints.
    Li X; Li G; Zhao Y; Kang X
    Sci Prog; 2020; 103(1):36850419877359. PubMed ID: 31829862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear control of a class of non-affine variable-speed variable-pitch wind turbines with radial-basis function neural networks.
    Bagheri P; Behjat L; Sun Q
    ISA Trans; 2022 Dec; 131():197-209. PubMed ID: 35715269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Barrier Lyapunov Function Based Learning Control of Hypersonic Flight Vehicle With AOA Constraint and Actuator Faults.
    Xu B; Shi Z; Sun F; He W
    IEEE Trans Cybern; 2019 Mar; 49(3):1047-1057. PubMed ID: 29994461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anti-disturbance backstepping control for air-breathing hypersonic vehicles based on extended state observer.
    Zhang S; Wang Q; Yang G; Zhang M
    ISA Trans; 2019 Sep; 92():84-93. PubMed ID: 30857674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Air-Breathing Hypersonic Vehicle Tracking Control Based on Adaptive Dynamic Programming.
    Mu C; Ni Z; Sun C; He H
    IEEE Trans Neural Netw Learn Syst; 2017 Mar; 28(3):584-598. PubMed ID: 26863677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive robust control of a class of non-affine variable-speed variable-pitch wind turbines with unmodeled dynamics.
    Bagheri P; Sun Q
    ISA Trans; 2016 Jul; 63():233-241. PubMed ID: 27157849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active disturbance rejection control based robust output feedback autopilot design for airbreathing hypersonic vehicles.
    Tian J; Zhang S; Zhang Y; Li T
    ISA Trans; 2018 Mar; 74():45-59. PubMed ID: 29373115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive dynamic surface control of flexible-joint robots using self-recurrent wavelet neural networks.
    Yoo SJ; Park JB; Choi YH
    IEEE Trans Syst Man Cybern B Cybern; 2006 Dec; 36(6):1342-55. PubMed ID: 17186810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Approximation-based adaptive tracking control of pure-feedback nonlinear systems with multiple unknown time-varying delays.
    Wang M; Ge SS; Hong KS
    IEEE Trans Neural Netw; 2010 Nov; 21(11):1804-16. PubMed ID: 20858576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust neural network tracking controller using simultaneous perturbation stochastic approximation.
    Song Q; Spall JC; Soh YC; Ni J
    IEEE Trans Neural Netw; 2008 May; 19(5):817-35. PubMed ID: 18467211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global tracking control of strict-feedback systems using neural networks.
    Huang JT
    IEEE Trans Neural Netw Learn Syst; 2012 Nov; 23(11):1714-25. PubMed ID: 24808067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuro-adaptive backstepping control of SISO non-affine systems with unknown gain sign.
    Ramezani Z; Arefi MM; Zargarzadeh H; Jahed-Motlagh MR
    ISA Trans; 2016 Nov; 65():199-209. PubMed ID: 27663188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.