These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 29459066)
1. Ecological thresholds of hypoxia and sedimentary H Kanaya G; Nakamura Y; Koizumi T Mar Environ Res; 2018 May; 136():27-37. PubMed ID: 29459066 [TBL] [Abstract][Full Text] [Related]
2. Seasonal changes in infaunal community structure in a hypertrophic brackish canal: Effects of hypoxia, sulfide, and predator-prey interaction. Kanaya G; Nakamura Y; Koizumi T; Yamada K Mar Environ Res; 2015 Jul; 108():14-23. PubMed ID: 25925266 [TBL] [Abstract][Full Text] [Related]
3. Effects of sedimentary sulfide on community structure, population dynamics, and colonization depth of macrozoobenthos in organic-rich estuarine sediments. Kanaya G; Uehara T; Kikuchi E Mar Pollut Bull; 2016 Aug; 109(1):393-401. PubMed ID: 27234365 [TBL] [Abstract][Full Text] [Related]
4. Impacts of the 2011 Tsunami on Sediment Characteristics and Macrozoobenthic Assemblages in a Shallow Eutrophic Lagoon, Sendai Bay, Japan. Kanaya G; Suzuki T; Kikuchi E PLoS One; 2015; 10(8):e0135125. PubMed ID: 26241654 [TBL] [Abstract][Full Text] [Related]
5. Impaired megabenthic community structure caused by summer hypoxia in a eutrophic coastal bay. Kodama K; Oyama M; Kume G; Serizawa S; Shiraishi H; Shibata Y; Shimizu M; Horiguchi T Ecotoxicology; 2010 Mar; 19(3):479-92. PubMed ID: 19936920 [TBL] [Abstract][Full Text] [Related]
6. Recolonization of macrozoobenthos on defaunated sediments in a hypertrophic brackish lagoon: effects of sulfide removal and sediment grain size. Kanaya G Mar Environ Res; 2014 Apr; 95():81-8. PubMed ID: 24447433 [TBL] [Abstract][Full Text] [Related]
7. Disturbance of benthic macrofauna in relation to hypoxia and organic enrichment in a eutrophic coastal bay. Kodama K; Lee JH; Oyama M; Shiraishi H; Horiguchi T Mar Environ Res; 2012 May; 76():80-9. PubMed ID: 21880357 [TBL] [Abstract][Full Text] [Related]
8. Spatiotemporal variations in macrofaunal assemblages linked to site-specific environmental factors in two contrasting nearshore habitats. Bae H; Lee JH; Song SJ; Ryu J; Noh J; Kwon BO; Choi K; Khim JS Environ Pollut; 2018 Oct; 241():596-606. PubMed ID: 29886380 [TBL] [Abstract][Full Text] [Related]
9. Effects of Zostera marina on the patterns of spatial distribution of sediments and macrozoobenthos in the boreal lagoon of Furen (Hokkaido, Japan). Magni P; Como S; Kamijo A; Montani S Mar Environ Res; 2017 Oct; 131():90-102. PubMed ID: 28967507 [TBL] [Abstract][Full Text] [Related]
10. Effects of hypoxia on benthic organisms in Tokyo Bay, Japan: a review. Kodama K; Horiguchi T Mar Pollut Bull; 2011; 63(5-12):215-20. PubMed ID: 21561630 [TBL] [Abstract][Full Text] [Related]
11. Macroinvertebrate communities from the shallow soft-bottoms of Deception Island (Southern Ocean): A paradise for opportunists. Angulo-Preckler C; Leiva C; Avila C; Taboada S Mar Environ Res; 2017 Jun; 127():62-74. PubMed ID: 28385268 [TBL] [Abstract][Full Text] [Related]
12. Two-year temporal response of benthic macrofauna and sediments to hypoxia in a tropical semi-enclosed bay (Cienfuegos, Cuba). Díaz Asencio L; Helguera Y; Fernández-Garcés R; Gómez-Batista M; Rosell G; Hernández Y; Pulido A; Armenteros M Rev Biol Trop; 2016 Mar; 64(1):177-88. PubMed ID: 28862417 [TBL] [Abstract][Full Text] [Related]
13. High spatial resolution analysis of the distribution of sulfate reduction and sulfide oxidation in hypoxic sediment in a eutrophic estuary. Rathnayake RM; Sugahara S; Maki H; Kanaya G; Seike Y; Satoh H Water Sci Technol; 2017 Jan; 75(2):418-426. PubMed ID: 28112669 [TBL] [Abstract][Full Text] [Related]
14. Spatio-temporal changes of marine macrobenthic community in sub-tropical waters upon recovery from eutrophication. I. Sediment quality and community structure. Shin PK; Lam NW; Wu RS; Qian PY; Cheung SG Mar Pollut Bull; 2008 Feb; 56(2):282-96. PubMed ID: 18061627 [TBL] [Abstract][Full Text] [Related]
15. Macroinvertebrate sensitivity thresholds for sediment in Virginia streams. Govenor H; Krometis LAH; Willis L; Angermeier PL; Hession WC Integr Environ Assess Manag; 2019 Jan; 15(1):77-92. PubMed ID: 30024091 [TBL] [Abstract][Full Text] [Related]
16. Sediment quality of the lower St. Johns River, Florida: an integrative assessment of benthic fauna, sediment-associated stressors, and general habitat characteristics. Cooksey C; Hyland J Mar Pollut Bull; 2007 Jan; 54(1):9-21. PubMed ID: 17070854 [TBL] [Abstract][Full Text] [Related]
17. Numerical evaluation of the use of granulated coal ash to reduce an oxygen-deficient water mass. Yamamoto H; Yamamoto T; Mito Y; Asaoka S Mar Pollut Bull; 2016 Jun; 107(1):188-205. PubMed ID: 27143344 [TBL] [Abstract][Full Text] [Related]
18. Impacts of dredged-material disposal on the coastal soft-bottom macrofauna, Saronikos Gulf, Greece. Katsiaras N; Simboura N; Tsangaris C; Hatzianestis I; Pavlidou A; Kapsimalis V Sci Total Environ; 2015 Mar; 508():320-30. PubMed ID: 25497354 [TBL] [Abstract][Full Text] [Related]
19. Response of benthic macrofauna to multiple anthropogenic pressures in the shallow coastal zone south of Sfax (Tunisia, central Mediterranean Sea). Mosbahi N; Serbaji MM; Pezy JP; Neifar L; Dauvin JC Environ Pollut; 2019 Oct; 253():474-487. PubMed ID: 31330340 [TBL] [Abstract][Full Text] [Related]
20. Changes in the location of biodiversity-ecosystem function hot spots across the seafloor landscape with increasing sediment nutrient loading. Thrush SF; Hewitt JE; Kraan C; Lohrer AM; Pilditch CA; Douglas E Proc Biol Sci; 2017 Apr; 284(1852):. PubMed ID: 28404774 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]