These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 29459116)

  • 21. Accumulation of arsenic in Lemna gibba L. (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany.
    Mkandawire M; Dudel EG
    Sci Total Environ; 2005 Jan; 336(1-3):81-9. PubMed ID: 15589251
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Capacity of Lemna gibba L. (duckweed) for uranium and arsenic phytoremediation in mine tailing waters.
    Mkandawire M; Taubert B; Dudel EG
    Int J Phytoremediation; 2004; 6(4):347-62. PubMed ID: 15696706
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heavy metal pollution induced due to coal mining effluent on surrounding aquatic ecosystem and its management through naturally occurring aquatic macrophytes.
    Mishra VK; Upadhyaya AR; Pandey SK; Tripathi BD
    Bioresour Technol; 2008 Mar; 99(5):930-6. PubMed ID: 17475484
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of a kinetic model for the removal of zinc using the aquatic macrophyte, Lemna gibba L.
    Khellaf N; Zerdaoui M
    Water Sci Technol; 2012; 66(5):953-7. PubMed ID: 22797221
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Arsenic uptake by Lemna minor in hydroponic system.
    Goswami C; Majumder A; Misra AK; Bandyopadhyay K
    Int J Phytoremediation; 2014; 16(7-12):1221-7. PubMed ID: 24933913
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Application of common duckweed (Lemna minor) in phytoremediation of chemicals in the environment: State and future perspective.
    Ekperusi AO; Sikoki FD; Nwachukwu EO
    Chemosphere; 2019 May; 223():285-309. PubMed ID: 30784736
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bio-accumulation and toxicity of lead (Pb) in Lemna gibba L (duckweed).
    Sobrino AS; Miranda MG; Alvarez C; Quiroz A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(1):107-10. PubMed ID: 20390849
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Artificial intelligence-based approaches to evaluate and optimize phytoremediation potential of in vitro regenerated aquatic macrophyte Ceratophyllum demersum L.
    Aasim M; Ali SA; Aydin S; Bakhsh A; Sogukpinar C; Karatas M; Khawar KM; Aydin ME
    Environ Sci Pollut Res Int; 2023 Mar; 30(14):40206-40217. PubMed ID: 36607572
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced Phytoremediation of Bisphenol A in Polluted Lake Water by Seedlings of
    Zhao C; Zhang G; Jiang J
    Int J Environ Res Public Health; 2021 Jan; 18(2):. PubMed ID: 33477860
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Removal of fluoride from water by five submerged plants.
    Zhou J; Gao J; Liu Y; Ba K; Chen S; Zhang R
    Bull Environ Contam Toxicol; 2012 Aug; 89(2):395-9. PubMed ID: 22722597
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heavy metal biomonitoring and phytoremediation potentialities of aquatic macrophytes in River Nile.
    Fawzy MA; Badr Nel-S; El-Khatib A; Abo-El-Kassem A
    Environ Monit Assess; 2012 Mar; 184(3):1753-71. PubMed ID: 21562793
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Boron removal by the duckweed Lemna gibba: a potential method for the remediation of boron-polluted waters.
    Del-Campo Marín CM; Oron G
    Water Res; 2007 Dec; 41(20):4579-84. PubMed ID: 17643472
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phytoaccumulation of zinc by the aquatic plant, Lemna gibba L.
    Khellaf N; Zerdaoui M
    Bioresour Technol; 2009 Dec; 100(23):6137-40. PubMed ID: 19581083
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Removal of estrone, 17alpha-ethinylestradiol, and 17beta-estradiol in algae and duckweed-based wastewater treatment systems.
    Shi W; Wang L; Rousseau DP; Lens PN
    Environ Sci Pollut Res Int; 2010 May; 17(4):824-33. PubMed ID: 20213308
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bisphenol A Removal by Submerged Macrophytes and the Contribution of Epiphytic Microorganisms to the Removal Process.
    Zhang G; Wang Y; Jiang J; Yang S
    Bull Environ Contam Toxicol; 2017 Jun; 98(6):770-775. PubMed ID: 28361461
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Comparison of Nitrogen and Phosphorus Uptake and Water Purification Ability of Five Submerged Macrophytes].
    Jin SQ; Zhou JB; Bao WH; Chen J; Li DD; Li Y
    Huan Jing Ke Xue; 2017 Jan; 38(1):156-161. PubMed ID: 29965042
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Levels and distribution of cobalt and nickel in the aquatic macrophytes found in Skadar Lake, Montenegro.
    Kastratović V; Bigović M; Jaćimović Ž; Kosović M; Đurović D; Krivokapić S
    Environ Sci Pollut Res Int; 2018 Sep; 25(27):26823-26830. PubMed ID: 29411283
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A preliminary survey of anthropogenic gadolinium in water and sediment of a constructed wetland.
    Altomare AJ; Young NA; Beazley MJ
    J Environ Manage; 2020 Feb; 255():109897. PubMed ID: 31783213
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Significant impact of seasonality, verticality and biofilm on element accumulation of aquatic macrophytes.
    Engloner AI; Németh K; Óvári M
    Environ Pollut; 2022 Jan; 292(Pt B):118402. PubMed ID: 34695514
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accumulation and retention of lead by cattail (Typha domingensis), hydrilla (Hydrilla verticillata), and duckweed (Lemna obscura).
    Gallardo-Williams MT; Whalen VA; Benson RF; Martin DF
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2002 Sep; 37(8):1399-408. PubMed ID: 12369634
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.