These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 29459292)

  • 1. Effect of off-plane bifurcation angles of primary bronchi on expiratory flows in the human trachea.
    Suh Y; Park JY
    Comput Biol Med; 2018 Apr; 95():63-74. PubMed ID: 29459292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling Inspiratory Flow in a Porcine Lung Airway.
    Gamage PPT; Khalili F; Khurshidul Azad MD; Mansy HA
    J Biomech Eng; 2018 Jun; 140(6):0610031-06100311. PubMed ID: 29131890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluid dynamics in airway bifurcations: II. Secondary currents.
    Martonen TB; Guan X; Schreck RM
    Inhal Toxicol; 2001 Apr; 13(4):281-9. PubMed ID: 11295862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro validation of computational fluid dynamic simulation in human proximal airways with hyperpolarized 3He magnetic resonance phase-contrast velocimetry.
    de Rochefort L; Vial L; Fodil R; Maître X; Louis B; Isabey D; Caillibotte G; Thiriet M; Bittoun J; Durand E; Sbirlea-Apiou G
    J Appl Physiol (1985); 2007 May; 102(5):2012-23. PubMed ID: 17289906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Steady expiratory flow in a model symmetric bifurcation.
    Zhao Y; Lieber BB
    J Biomech Eng; 1994 Aug; 116(3):318-23. PubMed ID: 7799634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluid dynamics in airway bifurcations: I. Primary flows.
    Martonen TB; Guan X; Schreck RM
    Inhal Toxicol; 2001 Apr; 13(4):261-79. PubMed ID: 11295861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Numerical study on inspiratory flows in two and three generation bronchi of human lung airways].
    Zhang C; Wen S; Liu Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Aug; 23(4):748-52. PubMed ID: 17002099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient Dynamics Simulation of Airflow in a CT-Scanned Human Airway Tree: More or Fewer Terminal Bronchi?
    Qi S; Zhang B; Teng Y; Li J; Yue Y; Kang Y; Qian W
    Comput Math Methods Med; 2017; 2017():1969023. PubMed ID: 29333194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Estimation of bronchial tree zones involved in formation of human forced expiratory wheezes through vortex shedding mechanism, depending on the dynamic compression of central airways].
    Korenbaum VI; Pochekutova IA; Safronova MA
    Fiziol Cheloveka; 2015; 41(1):65-73. PubMed ID: 25857179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a drift flux model for simulating submicrometer aerosol dynamics in human upper tracheobronchial airways.
    Xi J; Longest PW
    Ann Biomed Eng; 2008 Oct; 36(10):1714-34. PubMed ID: 18712605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling of peak-flow wall shear stress in major airways of the lung.
    Green AS
    J Biomech; 2004 May; 37(5):661-7. PubMed ID: 15046995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Fluid Dynamics Modeling of Respiratory Airflow in Tracheobronchial Airways of Infant, Child, and Adult.
    Tsega EG
    Comput Math Methods Med; 2018; 2018():9603451. PubMed ID: 30515236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical study of the effects of bronchial structural abnormalities on respiratory flow distribution.
    Yu S; Wang J; Sun X; Liu Y
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):164. PubMed ID: 28155703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detailed mathematical description of the geometry of airway bifurcations.
    Hegedus CJ; Balásházy I; Farkas A
    Respir Physiol Neurobiol; 2004 Jul; 141(1):99-114. PubMed ID: 15234679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of mechanical ventilation waveforms on airway wall shear.
    Pidaparti RM; Swanson J
    J Med Eng Technol; 2015 Jan; 39(1):1-8. PubMed ID: 25385315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivity and specificity of the computational model for maximal expiratory flow.
    Lambert RK
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Oct; 57(4):958-70. PubMed ID: 6501038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of the laryngeal jet on nano- and microparticle transport and deposition in an approximate model of the upper tracheobronchial airways.
    Xi J; Longest PW; Martonen TB
    J Appl Physiol (1985); 2008 Jun; 104(6):1761-77. PubMed ID: 18388247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Airflow and nanoparticle deposition in a 16-generation tracheobronchial airway model.
    Zhang Z; Kleinstreuer C; Kim CS
    Ann Biomed Eng; 2008 Dec; 36(12):2095-110. PubMed ID: 18850271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inspiratory and expiratory steady flow analysis in a model symmetrically bifurcating airway.
    Zhao Y; Brunskill CT; Lieber BB
    J Biomech Eng; 1997 Feb; 119(1):52-8. PubMed ID: 9083849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model study of flow dynamics in human central airways. Part III: Oscillatory velocity profiles.
    Menon AS; Weber ME; Chang HK
    Respir Physiol; 1984 Feb; 55(2):255-75. PubMed ID: 6729274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.