These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 29459340)

  • 1. Wet air oxidation of cresylic spent caustic - A model compound study over graphene oxide (GO) and ruthenium/GO catalysts.
    Barge AS; Vaidya PD
    J Environ Manage; 2018 Apr; 212():479-489. PubMed ID: 29459340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene oxide as an effective catalyst for wet air oxidation of phenol.
    Yang S; Cui Y; Sun Y; Yang H
    J Hazard Mater; 2014 Sep; 280():55-62. PubMed ID: 25127389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sewage-sludge-derived carbonaceous materials for catalytic wet hydrogen peroxide oxidation of m-cresol in batch and continuous reactors.
    Yu Y; Wei H; Yu L; Wang W; Zhao Y; Gu B; Sun C
    Environ Technol; 2016; 37(2):153-62. PubMed ID: 26109374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of phenol via wet-air oxidation over CuO/CeO2-ZrO2 nanocatalyst synthesized employing ultrasound energy: physicochemical characterization and catalytic performance.
    Parvas M; Haghighi M; Allahyari S
    Environ Technol; 2014; 35(9-12):1140-9. PubMed ID: 24701909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic and non-catalytic wet air oxidation of sodium dodecylbenzene sulfonate: kinetics and biodegradability enhancement.
    Suárez-Ojeda ME; Kim J; Carrera J; Metcalfe IS; Font J
    J Hazard Mater; 2007 Jun; 144(3):655-62. PubMed ID: 17363148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supported cobalt oxide on graphene oxide: highly efficient catalysts for the removal of Orange II from water.
    Shi P; Su R; Zhu S; Zhu M; Li D; Xu S
    J Hazard Mater; 2012 Aug; 229-230():331-9. PubMed ID: 22738772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of magnetic graphene oxide-ferrite nanocomposites for oxidative decomposition of Remazol Black B.
    Sheshmani S; Falahat B; Nikmaram FR
    Int J Biol Macromol; 2017 Apr; 97():671-678. PubMed ID: 28109816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron-catalyzed wet air oxidation of biomethanated distillery wastewater for enhanced biogas recovery.
    Bhoite GM; Vaidya PD
    J Environ Manage; 2018 Nov; 226():241-248. PubMed ID: 30121459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater.
    Chowdhury S; Balasubramanian R
    Adv Colloid Interface Sci; 2014 Feb; 204():35-56. PubMed ID: 24412086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photocatalytic degradation of P-Cresol using TiO
    Brooms TJ; Otieno B; Onyango MS; Ochieng A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018 Jan; 53(2):99-107. PubMed ID: 29028457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic wet air oxidation of coke-plant wastewater on ruthenium-based eggshell catalysts in a bubbling bed reactor.
    Yang M; Sun Y; Xu AH; Lu XY; Du HZ; Sun CL; Li C
    Bull Environ Contam Toxicol; 2007 Jul; 79(1):66-70. PubMed ID: 17593307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated process approach for degradation of p-cresol pollutant under photocatalytic reactor using activated carbon/TiO
    Singh T; Pal DB; Bhatiya AK; Mishra PK; Hashem A; Alqarawi AA; AbdAllah EF; Gupta VK; Srivastava N
    Environ Sci Pollut Res Int; 2022 Sep; 29(41):61811-61820. PubMed ID: 34415523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic wet air oxidation for the treatment of emulsifying wastewater.
    Zhao JF; Chen L; Lu YC; Tang WW
    J Environ Sci (China); 2005; 17(4):576-9. PubMed ID: 16158582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treatment of refractory nano-filtration reject from a tannery using Pd-catalyzed wet air oxidation.
    Tripathi PK; Rao NN; Chauhan C; Pophali GR; Kashyap SM; Lokhande SK; Gan L
    J Hazard Mater; 2013 Oct; 261():63-71. PubMed ID: 23911829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron-loaded carbon nanotube-microfibrous composite for catalytic wet peroxide oxidation of m-cresol in a fixed bed reactor.
    Yang Y; Zhang H; Huang H; Yan Y; Zhang X
    Environ Sci Pollut Res Int; 2020 Feb; 27(6):6338-6351. PubMed ID: 31873882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated catalytic wet air oxidation and aerobic biological treatment in a municipal WWTP of a high-strength o-cresol wastewater.
    Suarez-Ojeda ME; Guisasola A; Baeza JA; Fabregat A; Stüber F; Fortuny A; Font J; Carrera J
    Chemosphere; 2007 Feb; 66(11):2096-105. PubMed ID: 17095041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An efficient and environment-friendly method of removing graphene oxide in wastewater and its degradation mechanisms.
    Zhang CZ; Li T; Yuan Y; Xu J
    Chemosphere; 2016 Jun; 153():531-40. PubMed ID: 27042978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The selective catalytic reduction of NO over Ce
    Duan Z; Liu J; Shi J; Zhao Z; Wei Y; Zhang X; Jiang G; Duan A
    J Environ Sci (China); 2018 Mar; 65():1-7. PubMed ID: 29548380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active carbon-ceramic sphere as support of ruthenium catalysts for catalytic wet air oxidation (CWAO) of resin effluent.
    Liu WM; Hu YQ; Tu ST
    J Hazard Mater; 2010 Jul; 179(1-3):545-51. PubMed ID: 20362394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of the different oxidation treatment on the performance of multi-walled carbon nanotubes in the catalytic wet air oxidation of phenol.
    Yang S; Wang X; Yang H; Sun Y; Liu Y
    J Hazard Mater; 2012 Sep; 233-234():18-24. PubMed ID: 22819477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.