BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 29459498)

  • 1. Evaluation of Suppressiveness of Soils Exhibiting Soil-Borne Disease Suppression after Long-Term Application of Organic Amendments by the Co-cultivation Method of Pathogenic Fusarium oxysporum and Indigenous Soil Microorganisms.
    Mitsuboshi M; Kioka Y; Noguchi K; Asakawa S
    Microbes Environ; 2018 Mar; 33(1):58-65. PubMed ID: 29459498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of Disease Suppressiveness of Soils in Croplands by Co-Cultivation of Pathogenic Fusarium oxysporum and Indigenous Soil Microorganisms.
    Mitsuboshi M; Kioka Y; Noguchi K; Asakawa S
    Microbes Environ; 2022; 37(4):. PubMed ID: 36184470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Evaluation Method for the Suppression of Pathogenic Fusarium oxysporum by Soil Microorganisms Using the Dilution Plate Technique.
    Mitsuboshi M; Kioka Y; Noguchi K; Asakawa S
    Microbes Environ; 2016 Sep; 31(3):307-13. PubMed ID: 27558588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of the fungal cell wall by clostridial strains isolated from soil subjected to biological soil disinfestation and biocontrol of Fusarium wilt disease of spinach.
    Ueki A; Takehara T; Ishioka G; Kaku N; Ueki K
    Appl Microbiol Biotechnol; 2017 Nov; 101(22):8267-8277. PubMed ID: 28967048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Putative Effector Genes Distinguish Two Pathogenicity Groups of
    Batson AM; Fokkens L; Rep M; du Toit LJ
    Mol Plant Microbe Interact; 2021 Feb; 34(2):141-156. PubMed ID: 33103963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficacy of microorganisms selected from compost to control soil-borne pathogens.
    Pugliese M; Gullino ML; Garibaldi A
    Commun Agric Appl Biol Sci; 2010; 75(4):665-9. PubMed ID: 21534476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of vinegar residue compost amendments on cucumber growth and Fusarium wilt.
    Du N; Shi L; Du L; Yuan Y; Li B; Sang T; Sun J; Shu S; Guo S
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):19133-41. PubMed ID: 26250808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-Time PCR Assays for Races of the Spinach Fusarium Wilt Pathogen,
    Batson AM; Woodhall JW; du Toit LJ
    Plant Dis; 2023 Sep; 107(9):2633-2642. PubMed ID: 36734942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Stimulation of Indigenous Bacterial Antagonists by γ-Glutamyl-
    Nishioka T; Suga H; Shimizu M
    Appl Environ Microbiol; 2022 Dec; 88(24):e0155422. PubMed ID: 36445356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and Evaluation of a TaqMan Real-Time PCR Assay for Fusarium oxysporum f. sp. spinaciae.
    Okubara PA; Harrison LA; Gatch EW; Vandemark G; Schroeder KL; du Toit LJ
    Plant Dis; 2013 Jul; 97(7):927-937. PubMed ID: 30722577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Occurrence of Fusarium Wilt Caused by Fusarium oxysporum f. sp. spinaciae on Spinach (Spinacia oleracea) in Southern Italy.
    Sigillo L; Senape V; Serratore G; Infantino A
    Plant Dis; 2014 Jul; 98(7):1003. PubMed ID: 30708903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt.
    Mazurier S; Corberand T; Lemanceau P; Raaijmakers JM
    ISME J; 2009 Aug; 3(8):977-91. PubMed ID: 19369971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soil microbiome manipulation triggers direct and possible indirect suppression against Ralstonia solanacearum and Fusarium oxysporum.
    Deng X; Zhang N; Shen Z; Zhu C; Liu H; Xu Z; Li R; Shen Q; Salles JF
    NPJ Biofilms Microbiomes; 2021 Apr; 7(1):33. PubMed ID: 33846334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Evaluation Method for Suppression of Pathogenic Fusarium oxysporum by Soil Microorganisms Using the Dilution Plate Technique.
    Mitsuboshi M; Kioka Y; Noguchi K; Asakawa S
    Microbes Environ; 2017; 32(2):184. PubMed ID: 28652549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppression of Fusarium Wilt Caused by
    Yadav DR; Adhikari M; Kim SW; Kim HS; Lee YS
    J Microbiol Biotechnol; 2021 Sep; 31(9):1241-1255. PubMed ID: 34373438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Persistence of
    Henry PM; Pastrana AM; Leveau JHJ; Gordon TR
    Phytopathology; 2019 May; 109(5):770-779. PubMed ID: 30644330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CONTROL OF SOIL-BORNE DISEASES BY DIFFERENT COMPOSTS IN POTTED VEGETABLE CROPS.
    Pugliese M; Benetti A; Gilardi G; Gullino ML; Garibaldi A
    Commun Agric Appl Biol Sci; 2014; 79(2):37-40. PubMed ID: 26084080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soil Suppressiveness to Fusarium Disease Following Organic Amendments and Solarization.
    Klein E; Katan J; Gamliel A
    Plant Dis; 2011 Sep; 95(9):1116-1123. PubMed ID: 30732060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soil suppressiveness to fusarium disease: shifts in root microbiome associated with reduction of pathogen root colonization.
    Klein E; Ofek M; Katan J; Minz D; Gamliel A
    Phytopathology; 2013 Jan; 103(1):23-33. PubMed ID: 22950737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Survival of
    Paugh KR; Gordon TR
    Plant Dis; 2021 Apr; 105(4):912-918. PubMed ID: 33135994
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.