These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 29459516)

  • 1. Development of a Novel Spontaneous Emulsification Method for Peptide Delivery Using Porous Silica Particles.
    Toorisaka E; Nonaka Y
    J Oleo Sci; 2018 Mar; 67(3):303-306. PubMed ID: 29459516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the Formation Conditions of a Spontaneous Emulsification Using Porous Silica Particles.
    Toorisaka E; Nakayama M
    J Oleo Sci; 2020; 69(5):455-460. PubMed ID: 32378549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic effect of silica nanoparticles and charged surfactants in the formation and stability of submicron oil-in-water emulsions.
    Ghouchi Eskandar N; Simovic S; Prestidge CA
    Phys Chem Chem Phys; 2007 Dec; 9(48):6426-34. PubMed ID: 18060173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic formation and stabilization of oil-in-water emulsions by a weakly interacting mixture of zwitterionic surfactant and silica nanoparticles.
    Worthen AJ; Foster LM; Dong J; Bollinger JA; Peterman AH; Pastora LE; Bryant SL; Truskett TM; Bielawski CW; Johnston KP
    Langmuir; 2014 Feb; 30(4):984-94. PubMed ID: 24409832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimisation.
    Bouchemal K; Briançon S; Perrier E; Fessi H
    Int J Pharm; 2004 Aug; 280(1-2):241-51. PubMed ID: 15265563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fundamental Differences in Emulsification Principle between Three-phase Emulsification and Conventional Methods.
    Miyasaka K; Imai Y; Tajima K
    J Oleo Sci; 2020 Dec; 69(12):1551-1560. PubMed ID: 33177281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Competitive adsorption of surfactants and hydrophilic silica particles at the oil-water interface: interfacial tension and contact angle studies.
    Pichot R; Spyropoulos F; Norton IT
    J Colloid Interface Sci; 2012 Jul; 377(1):396-405. PubMed ID: 22487228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topical delivery of lipophilic drugs from o/w Pickering emulsions.
    Frelichowska J; Bolzinger MA; Pelletier J; Valour JP; Chevalier Y
    Int J Pharm; 2009 Apr; 371(1-2):56-63. PubMed ID: 19135516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and development of multiple emulsion for enhancement of oral bioavailability of acyclovir.
    Paul S; Kumar A; Yedurkar P; Sawant K
    Drug Dev Ind Pharm; 2013 Nov; 39(11):1809-17. PubMed ID: 23281917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative study on the capacity of a range of food-grade particles to form stable O/W and W/O Pickering emulsions.
    Duffus LJ; Norton JE; Smith P; Norton IT; Spyropoulos F
    J Colloid Interface Sci; 2016 Jul; 473():9-21. PubMed ID: 27042820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oil-in-water emulsions stabilized by sodium phosphorylated chitosan.
    Chongprakobkit S; Maniratanachote R; Tachaboonyakiat W
    Carbohydr Polym; 2013 Jul; 96(1):82-90. PubMed ID: 23688457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of vitamin D nanoemulsion-based delivery systems by spontaneous emulsification: factors affecting particle size and stability.
    Guttoff M; Saberi AH; McClements DJ
    Food Chem; 2015 Mar; 171():117-22. PubMed ID: 25308650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oil powders and gels from particle-stabilized emulsions.
    Adelmann H; Binks BP; Mezzenga R
    Langmuir; 2012 Jan; 28(3):1694-7. PubMed ID: 22224543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailoring Pickering Double Emulsions by in Situ Particle Surface Modification.
    Tiwari M; Basavaraj MG; Dugyala VR
    Langmuir; 2023 Feb; 39(8):2911-2921. PubMed ID: 36722867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. O/W nano-emulsion formation using an isothermal low-energy emulsification method in a mixture of polyglycerol polyricinoleate and hexaglycerol monolaurate with glycerol system.
    Wakisaka S; Nishimura T; Gohtani S
    J Oleo Sci; 2015; 64(4):405-13. PubMed ID: 25766932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellulose nanofibrils for one-step stabilization of multiple emulsions (W/O/W) based on soybean oil.
    Carrillo CA; Nypelö TE; Rojas OJ
    J Colloid Interface Sci; 2015 May; 445():166-173. PubMed ID: 25617611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pickering emulsions stabilized by a lipophilic surfactant and hydrophilic platelike particles.
    Wang J; Yang F; Tan J; Liu G; Xu J; Sun D
    Langmuir; 2010 Apr; 26(8):5397-404. PubMed ID: 20020723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of mesoporous silica microparticles by sol-gel/emulsion route for protein release.
    Vlasenkova MI; Dolinina ES; Parfenyuk EV
    Pharm Dev Technol; 2019 Feb; 24(2):243-252. PubMed ID: 29583055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mixed-emulsifier stabilised emulsions: Investigation of the effect of monoolein and hydrophilic silica particle mixtures on the stability against coalescence.
    Pichot R; Spyropoulos F; Norton IT
    J Colloid Interface Sci; 2009 Jan; 329(2):284-91. PubMed ID: 18977494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoemulsions prepared by a low-energy emulsification method applied to edible films.
    Bilbao-Sáinz C; Avena-Bustillos RJ; Wood DF; Williams TG; McHugh TH
    J Agric Food Chem; 2010 Nov; 58(22):11932-8. PubMed ID: 20977191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.