BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 29459720)

  • 1. Controlling striatal function via anterior frontal cortex stimulation.
    van Holstein M; Froböse MI; O'Shea J; Aarts E; Cools R
    Sci Rep; 2018 Feb; 8(1):3312. PubMed ID: 29459720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling the Temporal Dynamics of Reward Signals in Music-Induced Pleasure with TMS.
    Mas-Herrero E; Dagher A; Farrés-Franch M; Zatorre RJ
    J Neurosci; 2021 Apr; 41(17):3889-3899. PubMed ID: 33782048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Converging structural and functional connectivity of orbitofrontal, dorsolateral prefrontal, and posterior parietal cortex in the human striatum.
    Jarbo K; Verstynen TD
    J Neurosci; 2015 Mar; 35(9):3865-78. PubMed ID: 25740516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling human striatal cognitive function via the frontal cortex.
    van Schouwenburg MR; O'Shea J; Mars RB; Rushworth MF; Cools R
    J Neurosci; 2012 Apr; 32(16):5631-7. PubMed ID: 22514324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novelty modulates human striatal activation and prefrontal-striatal effective connectivity during working memory encoding.
    Geiger LS; Moessnang C; Schäfer A; Zang Z; Zangl M; Cao H; van Raalten TR; Meyer-Lindenberg A; Tost H
    Brain Struct Funct; 2018 Sep; 223(7):3121-3132. PubMed ID: 29752589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinguishing the Roles of Dorsolateral and Anterior PFC in Visual Metacognition.
    Shekhar M; Rahnev D
    J Neurosci; 2018 May; 38(22):5078-5087. PubMed ID: 29720553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boosting the effect of reward on cognitive control using TMS over the left IFJ.
    Hippmann B; Kuhlemann I; Bäumer T; Bahlmann J; Münte TF; Jessen S
    Neuropsychologia; 2019 Mar; 125():109-115. PubMed ID: 30721740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motivational effects on the processing of delayed intentions in the anterior prefrontal cortex.
    Bruening J; Ludwig VU; Paschke LM; Walter H; Stelzel C
    Neuroimage; 2018 May; 172():517-526. PubMed ID: 29409998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fronto-striatal connections in the human brain: a probabilistic diffusion tractography study.
    Leh SE; Ptito A; Chakravarty MM; Strafella AP
    Neurosci Lett; 2007 May; 419(2):113-8. PubMed ID: 17485168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reward sensitivity modulates brain activity in the prefrontal cortex, ACC and striatum during task switching.
    Fuentes-Claramonte P; Ávila C; Rodríguez-Pujadas A; Ventura-Campos N; Bustamante JC; Costumero V; Rosell-Negre P; Barrós-Loscertales A
    PLoS One; 2015; 10(4):e0123073. PubMed ID: 25875640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corticostriatal circuitry.
    Haber SN
    Dialogues Clin Neurosci; 2016 Mar; 18(1):7-21. PubMed ID: 27069376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Testosterone during Puberty Shifts Emotional Control from Pulvinar to Anterior Prefrontal Cortex.
    Tyborowska A; Volman I; Smeekens S; Toni I; Roelofs K
    J Neurosci; 2016 Jun; 36(23):6156-64. PubMed ID: 27277794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dorsal premotor cortex exerts a powerful and specific inhibitory effect on the ipsilateral corticofacial system: a dual-coil transcranial magnetic stimulation study.
    Parmigiani S; Barchiesi G; Cattaneo L
    Exp Brain Res; 2015 Nov; 233(11):3253-60. PubMed ID: 26233241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dorsolateral prefrontal cortex modulates striatal reward encoding during reappraisal of reward anticipation.
    Staudinger MR; Erk S; Walter H
    Cereb Cortex; 2011 Nov; 21(11):2578-88. PubMed ID: 21459835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parallel cognitive processing streams in human prefrontal cortex: Parsing areal-level brain network for response inhibition.
    Osada T; Ogawa A; Suda A; Nakajima K; Tanaka M; Oka S; Kamagata K; Aoki S; Oshima Y; Tanaka S; Hattori N; Konishi S
    Cell Rep; 2021 Sep; 36(12):109732. PubMed ID: 34551294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reward Contingencies Improve Goal-Directed Behavior by Enhancing Posterior Brain Attentional Regions and Increasing Corticostriatal Connectivity in Cocaine Addicts.
    Rosell-Negre P; Bustamante JC; Fuentes-Claramonte P; Costumero V; Llopis-Llacer JJ; Barrós-Loscertales A
    PLoS One; 2016; 11(12):e0167400. PubMed ID: 27907134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterarchical reinforcement-learning model for integration of multiple cortico-striatal loops: fMRI examination in stimulus-action-reward association learning.
    Haruno M; Kawato M
    Neural Netw; 2006 Oct; 19(8):1242-54. PubMed ID: 16987637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mobilization of Medial and Lateral Frontal-Striatal Circuits in Cocaine Users and Controls: An Interleaved TMS/BOLD Functional Connectivity Study.
    Hanlon CA; Dowdle LT; Moss H; Canterberry M; George MS
    Neuropsychopharmacology; 2016 Dec; 41(13):3032-3041. PubMed ID: 27374278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural systems underlying reward cue processing in early adolescence: The role of puberty and pubertal hormones.
    Ladouceur CD; Kerestes R; Schlund MW; Shirtcliff EA; Lee Y; Dahl RE
    Psychoneuroendocrinology; 2019 Apr; 102():281-291. PubMed ID: 30639923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frontostriatal Contribution to the Interplay of Flexibility and Stability in Serial Prediction.
    Trempler I; Schiffer AM; El-Sourani N; Ahlheim C; Fink GR; Schubotz RI
    J Cogn Neurosci; 2017 Feb; 29(2):298-309. PubMed ID: 27626228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.