These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 29459753)

  • 1. Cooling aerosols and changes in albedo counteract warming from CO
    Arvesen A; Cherubini F; Del Alamo Serrano G; Astrup R; Becidan M; Belbo H; Goile F; Grytli T; Guest G; Lausselet C; Rørstad PK; Rydså L; Seljeskog M; Skreiberg Ø; Vezhapparambu S; Strømman AH
    Sci Rep; 2018 Feb; 8(1):3299. PubMed ID: 29459753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Climate warming feedback from mountain birch forest expansion: reduced albedo dominates carbon uptake.
    de Wit HA; Bryn A; Hofgaard A; Karstensen J; Kvalevåg MM; Peters GP
    Glob Chang Biol; 2014 Jul; 20(7):2344-55. PubMed ID: 24343906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioenergy from forestry and changes in atmospheric CO2: reconciling single stand and landscape level approaches.
    Cherubini F; Guest G; Strømman AH
    J Environ Manage; 2013 Nov; 129():292-301. PubMed ID: 23974446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Albedo impact on the suitability of biochar systems to mitigate global warming.
    Meyer S; Bright RM; Fischer D; Schulz H; Glaser B
    Environ Sci Technol; 2012 Nov; 46(22):12726-34. PubMed ID: 23146092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biogenic CO2 fluxes, changes in surface albedo and biodiversity impacts from establishment of a miscanthus plantation.
    Jørgensen SV; Cherubini F; Michelsen O
    J Environ Manage; 2014 Dec; 146():346-354. PubMed ID: 25194521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The contribution of China's emissions to global climate forcing.
    Li B; Gasser T; Ciais P; Piao S; Tao S; Balkanski Y; Hauglustaine D; Boisier JP; Chen Z; Huang M; Li LZ; Li Y; Liu H; Liu J; Peng S; Shen Z; Sun Z; Wang R; Wang T; Yin G; Yin Y; Zeng H; Zeng Z; Zhou F
    Nature; 2016 Mar; 531(7594):357-61. PubMed ID: 26983540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climate impacts of U.S. forest loss span net warming to net cooling.
    Williams CA; Gu H; Jiao T
    Sci Adv; 2021 Feb; 7(7):. PubMed ID: 33579704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Albedo impacts of current agricultural land use: Crop-specific albedo from MODIS data and inclusion in LCA of crop production.
    Sieber P; Ericsson N; Hammar T; Hansson PA
    Sci Total Environ; 2022 Aug; 835():155455. PubMed ID: 35472345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of forest wood products to negative emissions: historical comparative analysis from 1960 to 2015 in Norway, Sweden and Finland.
    Iordan CM; Hu X; Arvesen A; Kauppi P; Cherubini F
    Carbon Balance Manag; 2018 Sep; 13(1):12. PubMed ID: 30182155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. More future synergies and less trade-offs between forest ecosystem services with natural climate solutions instead of bioeconomy solutions.
    Mazziotta A; Lundström J; Forsell N; Moor H; Eggers J; Subramanian N; Aquilué N; Morán-Ordóñez A; Brotons L; Snäll T
    Glob Chang Biol; 2022 Nov; 28(21):6333-6348. PubMed ID: 35949042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Climate change implications of shifting forest management strategy in a boreal forest ecosystem of Norway.
    Bright RM; Antón-Fernández C; Astrup R; Cherubini F; Kvalevåg M; Strømman AH
    Glob Chang Biol; 2014 Feb; 20(2):607-21. PubMed ID: 24277242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global warming implications from increased forest biomass utilization for bioenergy in a supply-constrained context.
    Saez de Bikuña K; Garcia R; Dias AC; Freire F
    J Environ Manage; 2020 Jun; 263():110292. PubMed ID: 32883484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiative forcing impacts of boreal forest biofuels: a scenario study for Norway in light of albedo.
    Bright RM; Strømman AH; Peters GP
    Environ Sci Technol; 2011 Sep; 45(17):7570-80. PubMed ID: 21797227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols.
    Jacobson MZ
    Nature; 2001 Feb; 409(6821):695-7. PubMed ID: 11217854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiative effects of aerosols over Indo-Gangetic plain: environmental (urban vs. rural) and seasonal variations.
    Ramachandran S; Kedia S
    Environ Sci Pollut Res Int; 2012 Jul; 19(6):2159-71. PubMed ID: 22231371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forest bioenergy or forest carbon? Assessing trade-offs in greenhouse gas mitigation with wood-based fuels.
    McKechnie J; Colombo S; Chen J; Mabee W; MacLean HL
    Environ Sci Technol; 2011 Jan; 45(2):789-95. PubMed ID: 21142063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitigating climate disruption in time: A self-consistent approach for avoiding both near-term and long-term global warming.
    Dreyfus GB; Xu Y; Shindell DT; Zaelke D; Ramanathan V
    Proc Natl Acad Sci U S A; 2022 May; 119(22):e2123536119. PubMed ID: 35605122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boreal forests, aerosols and the impacts on clouds and climate.
    Spracklen DV; Bonn B; Carslaw KS
    Philos Trans A Math Phys Eng Sci; 2008 Dec; 366(1885):4613-26. PubMed ID: 18826917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct climate effects of perennial bioenergy crops in the United States.
    Georgescu M; Lobell DB; Field CB
    Proc Natl Acad Sci U S A; 2011 Mar; 108(11):4307-12. PubMed ID: 21368189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon-equivalent metrics for albedo changes in land management contexts: relevance of the time dimension.
    Bright RM; Bogren W; Bernier P; Astrup R
    Ecol Appl; 2016 Sep; 26(6):1868-1880. PubMed ID: 27755703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.