These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 2945979)

  • 1. Relationship between membrane ATPase and shape changes in the dog erythrocyte.
    Hilton JG
    Life Sci; 1986 Nov; 39(20):1863-70. PubMed ID: 2945979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of thermal trauma on dog erythrocyte ATPase and shape.
    Hilton JG
    Burns Incl Therm Inj; 1985 Dec; 12(2):78-83. PubMed ID: 3004674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of Mg++-ATPase (actomyosin-like protein) in maintaining the biconcave shape of erythrocytes.
    Mircevová L
    Blut; 1977 Sep; 35(4):323-7. PubMed ID: 143972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of spectrin-dependent ATPase in erythrocyte shape maintenance.
    Mircevová L; Viktora L; Kodícek M; Rehácková H; Simonová A
    Biomed Biochim Acta; 1983; 42(11-12):S67-71. PubMed ID: 6232927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of hyperoxide radicals on bovine-erythrocyte membrane.
    Bartosz G; Fried R; Grzelińska E; Leyko W
    Eur J Biochem; 1977 Feb; 73(1):261-4. PubMed ID: 190010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Changes of erythrocyte membrane ATPase activities and plasma lipids in patients with coronary heart disease].
    Lu G; Ouyang S; Pei Z
    Hunan Yi Ke Da Xue Xue Bao; 1999; 24(1):68-70. PubMed ID: 11938746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Is there any connection between heat inactivation of spectrin-dependent ATPase and loss of smooth biconcave shape of red cells?
    Mircevová L; Kodícek M; Marík T
    Cell Biochem Funct; 1983 Oct; 1(3):145-6. PubMed ID: 6235978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hexachlorophene-induced changes in erythrocyte membrane ATPase activity.
    Lorusso DJ; Miller TL
    Res Commun Chem Pathol Pharmacol; 1981 Feb; 31(2):205-16. PubMed ID: 6452671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of (Ca2+ + Mg2+)-ATPase activity of human erythrocyte membranes by hemolysis in isosmotic imidazole buffer. I. General properties of variously prepared membranes and the mechanism of the isosmotic imidazole effect.
    Farrance ML; Vincenzi FF
    Biochim Biophys Acta; 1977 Nov; 471(1):49-58. PubMed ID: 144528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of (Ca2+ + Mg2+)-ATPase activity of human erythrocyte membranes by hemolysis in isosmotic imidazole buffer. II. Dependence on calcium and a cytoplasmic activator.
    Farrance ML; Vincenzi FF
    Biochim Biophys Acta; 1977 Nov; 471(1):59-66. PubMed ID: 144529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relationship between changes in viscosity of human erythrocyte membrane suspensions and (Mg + Ca)-ATPase activity.
    Quist EE; Roufogalis BD
    Biochem Biophys Res Commun; 1976 Sep; 72(2):673-9. PubMed ID: 136255
    [No Abstract]   [Full Text] [Related]  

  • 12. Imidazole enhancement of red cell membrane Ca-pump ATPase activity: a mechanism of action.
    Vincenzi FF; Farrance ML
    Proc West Pharmacol Soc; 1977; 20():317-8. PubMed ID: 142989
    [No Abstract]   [Full Text] [Related]  

  • 13. Diamide inhibited (Ca++ + Mg++) and (Mg++) dependent ATPase in erythrocyte membranes: activity at different temperatures.
    Scutari G; Ballestrin G; Covaz L
    Boll Soc Ital Biol Sper; 1979 Jul; 55(13):1283-7. PubMed ID: 159703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Red blood cell calmodulin and Ca2+ pump ATPase: preliminary results of a species comparison.
    Vincenzi FF
    Prog Clin Biol Res; 1981; 55():363-83. PubMed ID: 6117080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of heparin and hypobaric hypoxia on the blood electrolyte composition, ATPase activity and the membrane charge of erythrocytes].
    Pustovalov AP; Voronkov IF
    Farmakol Toksikol; 1988; 51(5):53-7. PubMed ID: 2974809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The lipid requirement of the (Ca2+ + Mg2+)-ATPase in the human erythrocyte membrane, as studied by various highly purified phospholipases.
    Roelofsen B; Schatzmann HJ
    Biochim Biophys Acta; 1977 Jan; 464(1):17-36. PubMed ID: 137746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Erythrocyte membrane ATPase activity of G6PD-deficient individuals and the effect of primaquine metabolite(s) on membrane ATPase enzymes.
    Akoğlu T; Ozdoğu H; Erdoğan R; Ozer FL
    J Trop Med Hyg; 1984 Oct; 87(5):219-24. PubMed ID: 6152296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A water-extractable Ca2+-atpase from erythrocyte membranes.
    White MD; Ralston GB
    Biochim Biophys Acta; 1980 Mar; 596(3):372-5. PubMed ID: 6102478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification of an activator of human erythrocyte membrane (Ca2++Mg2+)ATPase.
    Luthra MG; Au KS; Hanahan DJ
    Biochem Biophys Res Commun; 1977 Jul; 77(2):678-87. PubMed ID: 143282
    [No Abstract]   [Full Text] [Related]  

  • 20. [Role of membrane-bound calcium in changes in the ATPase activity, permeability and structural state of human erythrocyte membranes].
    Orlov SN; Shevchenko AS; Postnov IuV
    Biull Eksp Biol Med; 1978 Jun; 85(6):682-5. PubMed ID: 149575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.