These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 29460068)

  • 21. Bovine serum albumin nanoparticles containing amphotericin B were effective in treating murine cutaneous leishmaniasis and reduced the drug toxicity.
    Casa DM; Scariot DB; Khalil NM; Nakamura CV; Mainardes RM
    Exp Parasitol; 2018 Sep; 192():12-18. PubMed ID: 30026113
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Grandiflorenic acid promotes death of promastigotes via apoptosis-like mechanism and affects amastigotes by increasing total iron bound capacity.
    Bortoleti BTDS; Gonçalves MD; Tomiotto-Pellissier F; Miranda-Sapla MM; Assolini JP; Carloto ACM; de Carvalho PGC; Cardoso ILA; Simão ANC; Arakawa NS; Costa IN; Conchon-Costa I; Pavanelli WR
    Phytomedicine; 2018 Jul; 46():11-20. PubMed ID: 30097110
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of 3-alkylpyridine marine alkaloid analogues in Leishmania species related to American cutaneous leishmaniasis.
    Machado PA; Hilário FF; Carvalho LO; Silveira ML; Alves RB; Freitas RP; Coimbra ES
    Chem Biol Drug Des; 2012 Nov; 80(5):745-51. PubMed ID: 22882996
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Canine visceral leishmaniasis: comparison of in vitro leishmanicidal activity of marbofloxacin, meglumine antimoniate and sodium stibogluconate.
    Vouldoukis I; Rougier S; Dugas B; Pino P; Mazier D; Woehrlé F
    Vet Parasitol; 2006 Jan; 135(2):137-46. PubMed ID: 16242844
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lipid nanoparticles for amphotericin delivery in the treatment of American tegumentary leishmaniasis.
    de Souza RM; Maranhão RC; Tavares ER; Filippin-Monteiro FB; Nicodemo AC; Morikawa AT; Kanashiro EHY; Amato VS
    Drug Deliv Transl Res; 2020 Apr; 10(2):403-412. PubMed ID: 31701487
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigation of antileshmanial activities of Cuminum cyminum based green silver nanoparticles on L. tropica promastigotes and amastigotes in vitro.
    Bagirova M; Dinparvar S; Allahverdiyev AM; Unal K; Abamor ES; Novruzova M
    Acta Trop; 2020 Aug; 208():105498. PubMed ID: 32428676
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Susceptibility of promastigotes and intracellular amastigotes from distinct Leishmania species to the calpain inhibitor MDL28170.
    de Sousa Araújo PS; de Oliveira SSC; d'Avila-Levy CM; Dos Santos ALS; Branquinha MH
    Parasitol Res; 2018 Jul; 117(7):2085-2094. PubMed ID: 29728827
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Leishmanicidal activity of Himatanthus sucuuba latex against Leishmania amazonensis.
    Soares DC; Andrade AL; Delorenzi JC; Silva JR; Freire-de-Lima L; Falcão CA; Pinto AC; Rossi-Bergmann B; Saraiva EM
    Parasitol Int; 2010 Jun; 59(2):173-7. PubMed ID: 20096374
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro sensitivity testing of Leishmania clinical field isolates: preconditioning of promastigotes enhances infectivity for macrophage host cells.
    da Luz RI; Vermeersch M; Dujardin JC; Cos P; Maes L
    Antimicrob Agents Chemother; 2009 Dec; 53(12):5197-203. PubMed ID: 19752271
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 4-nitrochalcone exerts leishmanicidal effect on L. amazonensis promastigotes and intracellular amastigotes, and the 4-nitrochalcone encapsulation in beeswax copaiba oil nanoparticles reduces macrophages cytotoxicity.
    Assolini JP; da Silva TP; da Silva Bortoleti BT; Gonçalves MD; Tomiotto-Pellissier F; Sahd CS; Carloto ACM; Feuser PE; Cordeiro AP; Sayer C; Hermes de Araújo PH; Costa IN; Conchon-Costa I; Miranda-Sapla MM; Pavanelli WR
    Eur J Pharmacol; 2020 Oct; 884():173392. PubMed ID: 32735985
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The leishmanicidal effect of (3S)-16,17-didehydrofalcarinol, an oxylipin isolated from Tridax procumbens, is independent of NO production.
    Martín-Quintal Z; del Rosario García-Miss M; Mut-Martín M; Matus-Moo A; Torres-Tapia LW; Peraza-Sánchez SR
    Phytother Res; 2010 Jul; 24(7):1004-8. PubMed ID: 19953523
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanoparticles Loaded with a New Thiourea Derivative: Development and
    Meireles PW; de Souza DPB; Rezende MG; Borsodi MPG; de Oliveira DE; da Silva LCRP; de Souza AMT; Viana GM; Rodrigues CR; do Carmo FA; de Sousa VP; Rossi-Bergmann B; Cabral LM
    Curr Drug Deliv; 2020; 17(8):694-702. PubMed ID: 32621717
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro activity of new N-benzyl-1H-benzimidazol-2-amine derivatives against cutaneous, mucocutaneous and visceral Leishmania species.
    Nieto-Meneses R; Castillo R; Hernández-Campos A; Maldonado-Rangel A; Matius-Ruiz JB; Trejo-Soto PJ; Nogueda-Torres B; Dea-Ayuela MA; Bolás-Fernández F; Méndez-Cuesta C; Yépez-Mulia L
    Exp Parasitol; 2018 Jan; 184():82-89. PubMed ID: 29191699
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vitro evaluation of (-)α-bisabolol as a promising agent against Leishmania amazonensis.
    Rottini MM; Amaral AC; Ferreira JL; Silva JR; Taniwaki NN; Souza Cda S; d'Escoffier LN; Almeida-Souza F; Hardoim Dde J; Gonçalves da Costa SC; Calabrese Kda S
    Exp Parasitol; 2015 Jan; 148():66-72. PubMed ID: 25448354
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Co-administration of glycyrrhizic acid with the antileishmanial drug sodium antimony gluconate (SAG) cures SAG-resistant visceral leishmaniasis.
    Bhattacharjee A; Majumder S; Majumdar SB; Choudhuri SK; Roy S; Majumdar S
    Int J Antimicrob Agents; 2015 Mar; 45(3):268-77. PubMed ID: 25600891
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 2'-Hydroxyflavanone activity in vitro and in vivo against wild-type and antimony-resistant Leishmania amazonensis.
    Gervazoni LFO; Gonçalves-Ozório G; Almeida-Amaral EE
    PLoS Negl Trop Dis; 2018 Dec; 12(12):e0006930. PubMed ID: 30521527
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanoscaled hydrated antimony (V) oxide as a new approach to first-line antileishmanial drugs.
    Franco AM; Grafova I; Soares FV; Gentile G; Wyrepkowski CD; Bolson MA; Sargentini É; Carfagna C; Leskelä M; Grafov A
    Int J Nanomedicine; 2016; 11():6771-6780. PubMed ID: 28008252
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro and in vivo efficacy of ether lipid edelfosine against Leishmania spp. and SbV-resistant parasites.
    Varela-M RE; Villa-Pulgarin JA; Yepes E; Müller I; Modolell M; Muñoz DL; Robledo SM; Muskus CE; López-Abán J; Muro A; Vélez ID; Mollinedo F
    PLoS Negl Trop Dis; 2012; 6(4):e1612. PubMed ID: 22506086
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Leishmanicidal Activity of Isoselenocyanate Derivatives.
    Fernández-Rubio C; Larrea E; Peña Guerrero J; Sesma Herrero E; Gamboa I; Berrio C; Plano D; Amin S; Sharma AK; Nguewa PA
    Antimicrob Agents Chemother; 2019 Feb; 63(2):. PubMed ID: 30478164
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 2-Amino-thiophene derivatives present antileishmanial activity mediated by apoptosis and immunomodulation in vitro.
    Rodrigues KA; Dias CN; Néris PL; Rocha Jda C; Scotti MT; Scotti L; Mascarenhas SR; Veras RC; de Medeiros IA; Keesen Tde S; de Oliveira TB; de Lima Mdo C; Balliano TL; de Aquino TM; de Moura RO; Mendonça Junior FJ; de Oliveira MR
    Eur J Med Chem; 2015 Dec; 106():1-14. PubMed ID: 26513640
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.