BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 29460179)

  • 1. A siphonous morphology affects light-harvesting modulation in the intertidal green macroalga Bryopsis corticulans (Ulvophyceae).
    Giovagnetti V; Han G; Ware MA; Ungerer P; Qin X; Wang WD; Kuang T; Shen JR; Ruban AV
    Planta; 2018 Jun; 247(6):1293-1306. PubMed ID: 29460179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and functional properties of different types of siphonous LHCII trimers from an intertidal green alga Bryopsis corticulans.
    Li Z; Zhou C; Zhao S; Zhang J; Liu X; Sang M; Qin X; Yang Y; Han G; Kuang T; Shen JR; Wang W
    Structure; 2023 Oct; 31(10):1247-1258.e3. PubMed ID: 37633266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoprotection in the green tidal alga Ulva prolifera: role of LHCSR and PsbS proteins in response to high light stress.
    Mou S; Zhang X; Dong M; Fan X; Xu J; Cao S; Xu D; Wang W; Ye N
    Plant Biol (Stuttg); 2013 Nov; 15(6):1033-9. PubMed ID: 23865617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cards you have been dealt: How an intertidal green macroalga absorbs blue-green light.
    Gisriel CJ
    Structure; 2023 Oct; 31(10):1145-1147. PubMed ID: 37802030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An underlying mechanism of qE deficiency in marine angiosperm Zostera marina.
    Zhao W; Zhang QS; Tan Y; Liu Z; Ma MY; Wang MX; Luo CY
    Photosynth Res; 2021 Jun; 148(3):87-99. PubMed ID: 33934290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excitation dynamics and relaxation in the major antenna of a marine green alga Bryopsis corticulans.
    Li DH; Wang W; Zhou C; Zhang Y; Wang P; Shen JR; Kuang T; Zhang JP
    Biochim Biophys Acta Bioenerg; 2020 Jun; 1861(5-6):148186. PubMed ID: 32171793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral tuning of light-harvesting complex II in the siphonous alga Bryopsis corticulans and its effect on energy transfer dynamics.
    Akhtar P; Nowakowski PJ; Wang W; Do TN; Zhao S; Siligardi G; Garab G; Shen JR; Tan HS; Lambrev PH
    Biochim Biophys Acta Bioenerg; 2020 Jul; 1861(7):148191. PubMed ID: 32201306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chilling Upregulates Expression of the PsbS and LhcSR Genes in the Chloroplasts of the Green Microalga Lobosphaera incisa IPPAS C-2047.
    Ptushenko VV; Bondarenko GN; Vinogradova EN; Glagoleva ES; Karpova OV; Ptushenko OS; Shibzukhova KA; Solovchenko AE; Lobakova ES
    Biochemistry (Mosc); 2022 Dec; 87(12):1699-1706. PubMed ID: 36717458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Occurrence of the PsbS and LhcSR products in the green alga Ulva linza and their correlation with excitation pressure.
    Zhang X; Ye N; Mou S; Xu D; Fan X
    Plant Physiol Biochem; 2013 Sep; 70():336-41. PubMed ID: 23811776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral and functional studies on siphonaxanthin-type light-harvesting complex of photosystem II from Bryopsis corticulans.
    Wang W; Qin X; Sang M; Chen D; Wang K; Lin R; Lu C; Shen JR; Kuang T
    Photosynth Res; 2013 Nov; 117(1-3):267-79. PubMed ID: 23479128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The rise and fall of Light-Harvesting Complex Stress-Related proteins as photoprotection agents during evolution.
    Pinnola A
    J Exp Bot; 2019 Oct; 70(20):5527-5535. PubMed ID: 31424076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arabidopsis plants lacking PsbS protein possess photoprotective energy dissipation.
    Johnson MP; Ruban AV
    Plant J; 2010 Jan; 61(2):283-9. PubMed ID: 19843315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slow zeaxanthin accumulation and the enhancement of CP26 collectively contribute to an atypical non-photochemical quenching in macroalga Ulva prolifera under high light.
    Gao S; Zheng Z; Wang J; Wang G
    J Phycol; 2020 Apr; 56(2):393-403. PubMed ID: 31849051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of LHCSR and PsbS enhance light tolerance in Chlamydomonas reinhardtii.
    Wilson S; Kim E; Ishii A; Ruban AV; Minagawa J
    J Photochem Photobiol B; 2023 Jul; 244():112718. PubMed ID: 37156084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PsbS interactions involved in the activation of energy dissipation in Arabidopsis.
    Correa-Galvis V; Poschmann G; Melzer M; Stühler K; Jahns P
    Nat Plants; 2016 Feb; 2():15225. PubMed ID: 27249196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Exciton Dynamics Model of
    Nguyen HL; Do TN; Akhtar P; Jansen TLC; Knoester J; Wang W; Shen JR; Lambrev PH; Tan HS
    J Phys Chem B; 2021 Feb; 125(4):1134-1143. PubMed ID: 33478222
    [No Abstract]   [Full Text] [Related]  

  • 17. Role of PSBS and LHCSR in Physcomitrella patens acclimation to high light and low temperature.
    Gerotto C; Alboresi A; Giacometti GM; Bassi R; Morosinotto T
    Plant Cell Environ; 2011 Jun; 34(6):922-932. PubMed ID: 21332514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chlamydomonas reinhardtii PsbS Protein Is Functional and Accumulates Rapidly and Transiently under High Light.
    Tibiletti T; Auroy P; Peltier G; Caffarri S
    Plant Physiol; 2016 Aug; 171(4):2717-30. PubMed ID: 27329221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The xanthophyll cycle affects reversible interactions between PsbS and light-harvesting complex II to control non-photochemical quenching.
    Sacharz J; Giovagnetti V; Ungerer P; Mastroianni G; Ruban AV
    Nat Plants; 2017 Jan; 3():16225. PubMed ID: 28134919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LHCSR3 is a nonphotochemical quencher of both photosystems in
    Girolomoni L; Cazzaniga S; Pinnola A; Perozeni F; Ballottari M; Bassi R
    Proc Natl Acad Sci U S A; 2019 Mar; 116(10):4212-4217. PubMed ID: 30782831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.