These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
308 related articles for article (PubMed ID: 29460215)
1. Potential of biogenic methane for pilot-scale fermentation ex situ with lump anthracite and the changes of methanogenic consortia. Yang X; Chen Y; Wu R; Nie Z; Han Z; Tan K; Chen L J Ind Microbiol Biotechnol; 2018 Apr; 45(4):229-237. PubMed ID: 29460215 [TBL] [Abstract][Full Text] [Related]
2. A contribution of hydrogenotrophic methanogenesis to the biogenic coal bed methane reserves of Southern Qinshui Basin, China. Guo H; Yu Z; Thompson IP; Zhang H Appl Microbiol Biotechnol; 2014 Nov; 98(21):9083-93. PubMed ID: 25012785 [TBL] [Abstract][Full Text] [Related]
3. Methylotrophic methanogenesis governs the biogenic coal bed methane formation in Eastern Ordos Basin, China. Guo H; Yu Z; Liu R; Zhang H; Zhong Q; Xiong Z Appl Microbiol Biotechnol; 2012 Dec; 96(6):1587-97. PubMed ID: 22286516 [TBL] [Abstract][Full Text] [Related]
4. Field and laboratory studies on the bioconversion of coal to methane in the San Juan Basin. Wawrik B; Mendivelso M; Parisi VA; Suflita JM; Davidova IA; Marks CR; Van Nostrand JD; Liang Y; Zhou J; Huizinga BJ; Strąpoć D; Callaghan AV FEMS Microbiol Ecol; 2012 Jul; 81(1):26-42. PubMed ID: 22146015 [TBL] [Abstract][Full Text] [Related]
5. Cultivation-independent analysis of archaeal and bacterial communities of the formation water in an Indian coal bed to enhance biotransformation of coal into methane. Singh DN; Kumar A; Sarbhai MP; Tripathi AK Appl Microbiol Biotechnol; 2012 Feb; 93(3):1337-50. PubMed ID: 22202965 [TBL] [Abstract][Full Text] [Related]
6. Fermentation enhancement of methanogenic archaea consortia from an Illinois basin coalbed via DOL emulsion nutrition. Xiao D; Peng SP; Wang EY PLoS One; 2015; 10(4):e0124386. PubMed ID: 25884952 [TBL] [Abstract][Full Text] [Related]
7. Acetogens and acetoclastic methanosarcinales govern methane formation in abandoned coal mines. Beckmann S; Lueders T; Krüger M; von Netzer F; Engelen B; Cypionka H Appl Environ Microbiol; 2011 Jun; 77(11):3749-56. PubMed ID: 21460109 [TBL] [Abstract][Full Text] [Related]
8. Methane Generation from Anthracite by Fungi and Methanogen Mixed Flora Enriched from Produced Water Associated with the Qinshui Basin in China. Han Q; Guo H; Zhang J; Huang Z; Urynowicz MA; Ali MI ACS Omega; 2021 Nov; 6(47):31935-31944. PubMed ID: 34870016 [TBL] [Abstract][Full Text] [Related]
9. Mechanisms of secondary biogenic coalbed methane formation in bituminous coal seams: a joint experimental and multi-omics study. Zhang X; Liu B; Xue S; Chen J; Zheng C; Yang Y; Zhou T; Wang J; Zhang J Arch Microbiol; 2024 May; 206(6):263. PubMed ID: 38753104 [TBL] [Abstract][Full Text] [Related]
10. Pyrosequencing of mcrA and archaeal 16S rRNA genes reveals diversity and substrate preferences of methanogen communities in anaerobic digesters. Wilkins D; Lu XY; Shen Z; Chen J; Lee PK Appl Environ Microbiol; 2015 Jan; 81(2):604-13. PubMed ID: 25381241 [TBL] [Abstract][Full Text] [Related]
11. Biostimulation to identify microbial communities involved in methane generation in shallow, kerogen-rich shales. Meslé M; Périot C; Dromart G; Oger P J Appl Microbiol; 2013 Jan; 114(1):55-70. PubMed ID: 22979955 [TBL] [Abstract][Full Text] [Related]
12. [Methane-generating potential of coal samples with different maturity]. He Q; Ding C; Li G; Cheng H; Cheng L; Zhang H Wei Sheng Wu Xue Bao; 2013 Dec; 53(12):1307-17. PubMed ID: 24697103 [TBL] [Abstract][Full Text] [Related]
13. Dataset of coal bio-gasification and coalbed methane stimulation by single well nutrition injection in Qinshui anthracite coalbed methane wells. Xiao D; Keita M; Zhang C; Wang E; Diaz ND; Wu J; He H; Ma J; Julien EO Data Brief; 2022 Aug; 43():108353. PubMed ID: 35707246 [TBL] [Abstract][Full Text] [Related]
14. Shifts in soil bacterial and archaeal communities during freeze-thaw cycles in a seasonal frozen marsh, Northeast China. Ren J; Song C; Hou A; Song Y; Zhu X; Cagle GA Sci Total Environ; 2018 Jun; 625():782-791. PubMed ID: 29306166 [TBL] [Abstract][Full Text] [Related]
15. Selective trace elements significantly enhanced methane production in coal bed methane systems by stimulating microbial activity. Chin K-J; Ünal B; Sanderson M; Aboderin F; Nüsslein K Microbiol Spectr; 2024 Feb; 12(2):e0350823. PubMed ID: 38236038 [TBL] [Abstract][Full Text] [Related]
16. Evidence for syntrophic acetate oxidation coupled to hydrogenotrophic methanogenesis in the high-temperature petroleum reservoir of Yabase oil field (Japan). Mayumi D; Mochimaru H; Yoshioka H; Sakata S; Maeda H; Miyagawa Y; Ikarashi M; Takeuchi M; Kamagata Y Environ Microbiol; 2011 Aug; 13(8):1995-2006. PubMed ID: 20860731 [TBL] [Abstract][Full Text] [Related]
17. Functional responses and adaptation of mesophilic microbial communities to psychrophilic anaerobic digestion. Gunnigle E; Nielsen JL; Fuszard M; Botting CH; Sheahan J; O'Flaherty V; Abram F FEMS Microbiol Ecol; 2015 Dec; 91(12):. PubMed ID: 26507125 [TBL] [Abstract][Full Text] [Related]
18. The influence of hydrogeological disturbance and mining on coal seam microbial communities. Raudsepp MJ; Gagen EJ; Evans P; Tyson GW; Golding SD; Southam G Geobiology; 2016 Mar; 14(2):163-75. PubMed ID: 26541089 [TBL] [Abstract][Full Text] [Related]
19. Long-term succession in a coal seam microbiome during in situ biostimulation of coalbed-methane generation. Beckmann S; Luk AWS; Gutierrez-Zamora ML; Chong NHH; Thomas T; Lee M; Manefield M ISME J; 2019 Mar; 13(3):632-650. PubMed ID: 30323265 [TBL] [Abstract][Full Text] [Related]
20. Acetoclastic methanogenesis is likely the dominant biochemical pathway of palmitate degradation in the presence of sulfate. Lv L; Mbadinga SM; Wang LY; Liu JF; Gu JD; Mu BZ; Yang SZ Appl Microbiol Biotechnol; 2015 Sep; 99(18):7757-69. PubMed ID: 25985849 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]