These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 29460431)

  • 1. Estimating dispersal in spatiotemporally variable environments using multievent capture-recapture modeling.
    Cayuela H; Pradel R; Joly P; Bonnaire E; Besnard A
    Ecology; 2018 May; 99(5):1150-1163. PubMed ID: 29460431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple density-dependent processes shape the dynamics of a spatially structured amphibian population.
    Cayuela H; Schmidt BR; Weinbach A; Besnard A; Joly P
    J Anim Ecol; 2019 Jan; 88(1):164-177. PubMed ID: 30280381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Context-dependent dispersal, public information, and heterospecific attraction in newts.
    Cayuela H; Grolet O; Joly P
    Oecologia; 2018 Dec; 188(4):1069-1080. PubMed ID: 30315372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does habitat unpredictability promote the evolution of a colonizer syndrome in amphibian metapopulations?
    Cayuela H; Boualit L; Arsovski D; Bonnaire E; Pichenot J; Bellec A; Miaud C; Léna JP; Joly P; Besnard A
    Ecology; 2016 Oct; 97(10):2658-2670. PubMed ID: 27859109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Informed breeding dispersal following stochastic changes to patch quality in a pond-breeding amphibian.
    Barrile GM; Walters A; Webster M; Chalfoun AD
    J Anim Ecol; 2021 Aug; 90(8):1878-1890. PubMed ID: 33884620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Context-dependent dispersal determines relatedness and genetic structure in a patchy amphibian population.
    Unglaub B; Cayuela H; Schmidt BR; Preißler K; Glos J; Steinfartz S
    Mol Ecol; 2021 Oct; 30(20):5009-5028. PubMed ID: 34490661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transience, dispersal and survival rates in newt patchy populations.
    Perret N; Pradel R; Miaud C; Grolet O; Joly P
    J Anim Ecol; 2003 Jul; 72(4):567-575. PubMed ID: 30893969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in methods for estimating stopover duration for migratory species using capture-recapture data.
    Guérin S; Picard D; Choquet R; Besnard A
    Ecol Appl; 2017 Jul; 27(5):1594-1604. PubMed ID: 28374916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local epiphyte establishment and future metapopulation dynamics in landscapes with different spatiotemporal properties.
    Belinchón R; Harrison PJ; Mair L; Várkonyi G; Snäll T
    Ecology; 2017 Mar; 98(3):741-750. PubMed ID: 27984632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Joint evolution of dispersal propensity and site selection in structured metapopulation models.
    Nurmi T; Parvinen K; Selonen V
    J Theor Biol; 2018 May; 444():50-72. PubMed ID: 29452172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Testing the applicability of tagging the Great crested newt (Triturus cristatus) using passive integrated transponders.
    Weber L; Šmejkal M; Bartoň D; Rulík M
    PLoS One; 2019; 14(7):e0219069. PubMed ID: 31283761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating dispersal among numerous sites using capture-recapture data.
    Lagrange P; Pradel R; Bélisle M; Gimenez O
    Ecology; 2014 Aug; 95(8):2316-23. PubMed ID: 25230481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metapopulation viability of an endangered shorebird depends on dispersal and human-created habitats: piping plovers (Charadrius melodus) and prairie rivers.
    Catlin DH; Zeigler SL; Brown MB; Dinan LR; Fraser JD; Hunt KL; Jorgensen JG
    Mov Ecol; 2016; 4():6. PubMed ID: 26981249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient spatial multi-state capture-recapture model to study natal dispersal: An application to the Alpine marmot.
    Dupont P; Allainé D; Ferrandiz-Rovira M; Pradel R
    J Anim Ecol; 2022 Jan; 91(1):266-278. PubMed ID: 34743354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenotype-by-environment interactions influence dispersal.
    Baines CB; Ferzoco IMC; McCauley SJ
    J Anim Ecol; 2019 Aug; 88(8):1263-1274. PubMed ID: 31077361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increasing connectivity between metapopulation ecology and landscape ecology.
    Howell PE; Muths E; Hossack BR; Sigafus BH; Chandler RB
    Ecology; 2018 May; 99(5):1119-1128. PubMed ID: 29453767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multievent approach to estimating pair fidelity and heterogeneity in state transitions.
    Culina A; Lachish S; Pradel R; Choquet R; Sheldon BC
    Ecol Evol; 2013 Nov; 3(13):4326-38. PubMed ID: 24340175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using imputation and mixture model approaches to integrate multi-state capture-recapture models with assignment information.
    Wen Z; Pollock KH; Nichols JD; Waser PM; Cao W
    Biometrics; 2014 Jun; 70(2):323-34. PubMed ID: 24571715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial asymmetries in connectivity influence colonization-extinction dynamics.
    Acevedo MA; Fletcher RJ; Tremblay RL; Meléndez-Ackerman EJ
    Oecologia; 2015 Oct; 179(2):415-24. PubMed ID: 26054613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Testing metapopulation dynamics using genetic, demographic and ecological data.
    Lamy T; Pointier JP; Jarne P; David P
    Mol Ecol; 2012 Mar; 21(6):1394-410. PubMed ID: 22332609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.