These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 2946092)
1. Immunologic identification of the cleavage products from the A alpha- and B beta-chains in the early stages of plasmin digestion of fibrinogen. Liu CY; Sobel JH; Weitz JI; Kaplan KL; Nossel HL Thromb Haemost; 1986 Aug; 56(1):100-6. PubMed ID: 2946092 [TBL] [Abstract][Full Text] [Related]
2. Lymphocyte suppressive peptides from fibrinogen are derived predominantly from the A alpha chain. Plow EF; Edgington TS J Immunol; 1986 Sep; 137(6):1910-5. PubMed ID: 2943807 [TBL] [Abstract][Full Text] [Related]
3. A re-examination of the cleavage of fibrinogen and fibrin by plasmin. Ferguson EW; Fretto LJ; McKee PA J Biol Chem; 1975 Sep; 250(18):7210-8. PubMed ID: 126232 [TBL] [Abstract][Full Text] [Related]
4. Characterization of an apparently lower molecular weight gamma-chain variant in fibrinogen Kyoto I. The replacement of gamma-asparagine 308 by lysine which causes accelerated cleavage of fragment D1 by plasmin and the generation of a new plasmin cleavage site. Yoshida N; Terukina S; Okuma M; Moroi M; Aoki N; Matsuda M J Biol Chem; 1988 Sep; 263(27):13848-56. PubMed ID: 2971046 [TBL] [Abstract][Full Text] [Related]
5. Degradation of cross-linked fibrin by human leukocyte proteases. Francis CW; Marder VJ J Lab Clin Med; 1986 Apr; 107(4):342-52. PubMed ID: 3514776 [TBL] [Abstract][Full Text] [Related]
6. Immunobiology of fibrinogen. Emergence of neoantigenic expressions during physiologic cleavage in vitro and in vivo. Plow E; Edgington TS J Clin Invest; 1973 Feb; 52(2):273-82. PubMed ID: 4119160 [TBL] [Abstract][Full Text] [Related]
7. Comparison of the physicochemical properties of fragment D derivatives of fibrinogen and fragment D-D of cross-linked fibrin. Marder VJ; Budzynski AZ; Barlow GH Biochim Biophys Acta; 1976 Mar; 427(1):1-14. PubMed ID: 130927 [TBL] [Abstract][Full Text] [Related]
9. Preparation and characterization of NH2-terminal fibrinogen B beta fragments from N-DSK of human fibrinogen. Birken S; Agosto G; Lahiri B; Canfield R Thromb Haemost; 1984 Feb; 51(1):16-21. PubMed ID: 6232727 [TBL] [Abstract][Full Text] [Related]
10. Interaction between fibrinogen and cultured endothelial cells. Induction of migration and specific binding. Dejana E; Languino LR; Polentarutti N; Balconi G; Ryckewaert JJ; Larrieu MJ; Donati MB; Mantovani A; Marguerie G J Clin Invest; 1985 Jan; 75(1):11-8. PubMed ID: 3965498 [TBL] [Abstract][Full Text] [Related]
11. Sequence of plasmin proteolysis at the NH2-terminus of the b beta-chain of human fibrinogen. Koehn JA; Hurlet-Jensen A; Nossel HL; Canfield RE Anal Biochem; 1983 Sep; 133(2):502-10. PubMed ID: 6227262 [TBL] [Abstract][Full Text] [Related]
12. An alternative pathway for fibrinolysis. I. The cleavage of fibrinogen by leukocyte proteases at physiologic pH. Plow EF; Edgington TS J Clin Invest; 1975 Jul; 56(1):30-8. PubMed ID: 237938 [TBL] [Abstract][Full Text] [Related]
13. Binding of fibrinogen to ADP-treated platelets. Comparison of plasma fibrinogen fractions and early plasmic fibrinogen derivatives. Peerschke EI; Galanakis DK J Lab Clin Med; 1983 Mar; 101(3):453-60. PubMed ID: 6827176 [TBL] [Abstract][Full Text] [Related]
14. Calcium modulates plasmin cleavage of the fibrinogen D fragment gamma chain N-terminus: mapping of monoclonal antibody J88B to a plasmin sensitive domain of the gamma chain. Odrljin TM; Rybarczyk BJ; Francis CW; Lawrence SO; Hamaguchi M; Simpson-Haidaris PJ Biochim Biophys Acta; 1996 Nov; 1298(1):69-77. PubMed ID: 8948490 [TBL] [Abstract][Full Text] [Related]
15. Binding of a new monoclonal antibody against N-terminal heptapeptide of fibrin alpha-chain to fibrin polymerization site 'A': effects of fibrinogen and fibrinogen derivatives, and pretreatment of samples with NaSCN. Dempfle CE; Dollman M; Lill H; Puzzovio D; Dessauer A; Heene DL Blood Coagul Fibrinolysis; 1993 Feb; 4(1):79-86. PubMed ID: 8457657 [TBL] [Abstract][Full Text] [Related]
16. Fibrinogen degradation by hementin, a fibrinogenolytic anticoagulant from the salivary glands of the leech Haementeria ghilianii. Malinconico SM; Katz JB; Budzynski AZ J Lab Clin Med; 1984 Nov; 104(5):842-54. PubMed ID: 6387015 [TBL] [Abstract][Full Text] [Related]
17. Plasmic degradation of human fibrinogen. IV. Identification of subunit chain remnants in fragment Y. Furlan M; Seelich T; Beck EA Biochim Biophys Acta; 1975 Jul; 400(1):112-20. PubMed ID: 125108 [TBL] [Abstract][Full Text] [Related]
18. Characterization of peptides cleaved by plasmin from the C-terminal polymerization domain of human fibrinogen. Southan C; Thompson E; Panico M; Etienne T; Morris HR; Lane DA J Biol Chem; 1985 Oct; 260(24):13095-101. PubMed ID: 2932434 [TBL] [Abstract][Full Text] [Related]
19. Structural difference between polymerized and non-polymerized fragment X, obtained by plasmin digest of fibrinogen. Sato H; Swadesh JK Int J Biol Macromol; 1993 Dec; 15(6):323-7. PubMed ID: 8110652 [TBL] [Abstract][Full Text] [Related]
20. Effect of plasminogen activator (urokinase), plasmin, and thrombin on glycoprotein and collagenous components of basement membrane. Liotta LA; Goldfarb RH; Brundage R; Siegal GP; Terranova V; Garbisa S Cancer Res; 1981 Nov; 41(11 Pt 1):4629-36. PubMed ID: 6458354 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]