These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
427 related articles for article (PubMed ID: 29461031)
1. Redox Additive-Improved Electrochemically and Structurally Robust Binder-Free Nickel Pyrophosphate Nanorods as Superior Cathode for Hybrid Supercapacitors. Sankar KV; Seo Y; Lee SC; Chan Jun S ACS Appl Mater Interfaces; 2018 Mar; 10(9):8045-8056. PubMed ID: 29461031 [TBL] [Abstract][Full Text] [Related]
2. Fabrication of a High-Energy Flexible All-Solid-State Supercapacitor Using Pseudocapacitive 2D-Ti Patil AM; Kitiphatpiboon N; An X; Hao X; Li S; Hao X; Abudula A; Guan G ACS Appl Mater Interfaces; 2020 Nov; 12(47):52749-52762. PubMed ID: 33185100 [TBL] [Abstract][Full Text] [Related]
3. Nickel molybdate nanorods supported on three-dimensional, porous nickel film coated on copper wire as an advanced binder-free electrode for flexible wire-type asymmetric micro-supercapacitors with enhanced electrochemical performances. Naderi L; Shahrokhian S J Colloid Interface Sci; 2019 Apr; 542():325-338. PubMed ID: 30763900 [TBL] [Abstract][Full Text] [Related]
4. High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode. Luan F; Wang G; Ling Y; Lu X; Wang H; Tong Y; Liu XX; Li Y Nanoscale; 2013 Sep; 5(17):7984-90. PubMed ID: 23864110 [TBL] [Abstract][Full Text] [Related]
5. Achieving a High Areal Capacity with a Binder-Free Copper Molybdate Nanocone Array-Based Positive Electrode for Hybrid Supercapacitors. Cha SM; Chandra Sekhar S; Bhimanaboina R; Yu JS Inorg Chem; 2018 Jul; 57(14):8440-8450. PubMed ID: 29949361 [TBL] [Abstract][Full Text] [Related]
6. Novel Dual-Ion Hybrid Supercapacitor Based on a NiCo Li Y; Tang F; Wang R; Wang C; Liu J ACS Appl Mater Interfaces; 2016 Nov; 8(44):30232-30238. PubMed ID: 27797167 [TBL] [Abstract][Full Text] [Related]
7. Flexible and Freestanding Supercapacitor Electrodes Based on Nitrogen-Doped Carbon Networks/Graphene/Bacterial Cellulose with Ultrahigh Areal Capacitance. Ma L; Liu R; Niu H; Xing L; Liu L; Huang Y ACS Appl Mater Interfaces; 2016 Dec; 8(49):33608-33618. PubMed ID: 27960422 [TBL] [Abstract][Full Text] [Related]
8. Engineering coordination polymer-derived one-dimensional porous S-doped Co Li Y; Li W; Yang C; Tao K; Ma Q; Han L Dalton Trans; 2020 Aug; 49(30):10421-10430. PubMed ID: 32697251 [TBL] [Abstract][Full Text] [Related]
9. Construction of Hierarchical CNT/rGO-Supported MnMoO Mu X; Du J; Zhang Y; Liang Z; Wang H; Huang B; Zhou J; Pan X; Zhang Z; Xie E ACS Appl Mater Interfaces; 2017 Oct; 9(41):35775-35784. PubMed ID: 28948775 [TBL] [Abstract][Full Text] [Related]
10. High energy density asymmetric supercapacitor based on NiOOH/Ni3S2/3D graphene and Fe3O4/graphene composite electrodes. Lin TW; Dai CS; Hung KC Sci Rep; 2014 Dec; 4():7274. PubMed ID: 25449978 [TBL] [Abstract][Full Text] [Related]
11. One-Dimensional NiSe-Se Hollow Nanotubular Architecture as a Binder-Free Cathode with Enhanced Redox Reactions for High-Performance Hybrid Supercapacitors. Subhadarshini S; Pavitra E; Rama Raju GS; Chodankar NR; Goswami DK; Han YK; Huh YS; Das NC ACS Appl Mater Interfaces; 2020 Jul; 12(26):29302-29315. PubMed ID: 32525302 [TBL] [Abstract][Full Text] [Related]
12. Redox-Active Hydrogel Polymer Electrolytes with Different pH Values for Enhancing the Energy Density of the Hybrid Solid-State Supercapacitor. Tang X; Lui YH; Merhi AR; Chen B; Ding S; Zhang B; Hu S ACS Appl Mater Interfaces; 2017 Dec; 9(51):44429-44440. PubMed ID: 29206439 [TBL] [Abstract][Full Text] [Related]
14. A p-nitroaniline redox-active solid-state electrolyte for battery-like electrochemical capacitive energy storage combined with an asymmetric supercapacitor based on metal oxide functionalized β-polytype porous silicon carbide electrodes. Kim M; Yoo J; Kim J Dalton Trans; 2017 May; 46(20):6588-6600. PubMed ID: 28453005 [TBL] [Abstract][Full Text] [Related]
15. Ni,S co-doped Cu dendrites decorated with core-shell architecture assisted by MOF and Fe Naderi L; Shahrokhian S Nanoscale; 2024 Nov; 16(43):20260-20279. PubMed ID: 39403986 [TBL] [Abstract][Full Text] [Related]
16. Achieving Ultrahigh Cycling Stability and Extended Potential Window for Supercapacitors through Asymmetric Combination of Conductive Polymer Nanocomposite and Activated Carbon. Gul H; Shah AA; Bilal S Polymers (Basel); 2019 Oct; 11(10):. PubMed ID: 31615090 [TBL] [Abstract][Full Text] [Related]
17. All-solid-state asymmetric supercapacitors based on Fe-doped mesoporous Co Zhang C; Wei J; Chen L; Tang S; Deng M; Du Y Nanoscale; 2017 Oct; 9(40):15423-15433. PubMed ID: 28975952 [TBL] [Abstract][Full Text] [Related]
18. Oxalic acid assisted rapid synthesis of mesoporous NiCo Acharya J; Ko TH; Seo MK; Khil MS; Kim HY; Kim BS J Colloid Interface Sci; 2020 Mar; 564():65-76. PubMed ID: 31901835 [TBL] [Abstract][Full Text] [Related]
19. Novel Design of Perovskite-Structured Neodymium Cobalt Oxide Nanoparticle-Embedded Graphene Oxide Nanocomposites as Efficient Active Materials of Energy Storage Devices. Koventhan C; Pandiyarajan S; Chen SM; Selvan CS ACS Appl Mater Interfaces; 2023 Sep; 15(38):44876-44886. PubMed ID: 37712759 [TBL] [Abstract][Full Text] [Related]
20. Construction and Electrochemical Properties of Solid-state Supercapacitors with Redox Additives. Wang B; Li D; Sun M; Li Y; Liang J; Jing Y; Du J; Hao J; Qin W; Wu C; Chen Y Chem Asian J; 2022 Sep; 17(18):e202200702. PubMed ID: 35871606 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]