These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 29461046)
1. Three-Dimensional-Bioprinted Dopamine-Based Matrix for Promoting Neural Regeneration. Zhou X; Cui H; Nowicki M; Miao S; Lee SJ; Masood F; Harris BT; Zhang LG ACS Appl Mater Interfaces; 2018 Mar; 10(10):8993-9001. PubMed ID: 29461046 [TBL] [Abstract][Full Text] [Related]
2. 3D bioprinting mesenchymal stem cell-laden construct with core-shell nanospheres for cartilage tissue engineering. Zhu W; Cui H; Boualam B; Masood F; Flynn E; Rao RD; Zhang ZY; Zhang LG Nanotechnology; 2018 May; 29(18):185101. PubMed ID: 29446757 [TBL] [Abstract][Full Text] [Related]
3. Gelatin methacrylamide hydrogel with graphene nanoplatelets for neural cell-laden 3D bioprinting. Wei Zhu ; Harris BT; Zhang LG Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4185-4188. PubMed ID: 28269205 [TBL] [Abstract][Full Text] [Related]
4. Three-Dimensional Printing Biologically Inspired DNA-Based Gradient Scaffolds for Cartilage Tissue Regeneration. Zhou X; Tenaglio S; Esworthy T; Hann SY; Cui H; Webster TJ; Fenniri H; Zhang LG ACS Appl Mater Interfaces; 2020 Jul; 12(29):33219-33228. PubMed ID: 32603082 [TBL] [Abstract][Full Text] [Related]
5. Stereolithography 3D Bioprinting Method for Fabrication of Human Corneal Stroma Equivalent. Mahdavi SS; Abdekhodaie MJ; Kumar H; Mashayekhan S; Baradaran-Rafii A; Kim K Ann Biomed Eng; 2020 Jul; 48(7):1955-1970. PubMed ID: 32504140 [TBL] [Abstract][Full Text] [Related]
6. 3D bioprinted multiscale composite scaffolds based on gelatin methacryloyl (GelMA)/chitosan microspheres as a modular bioink for enhancing 3D neurite outgrowth and elongation. Chen J; Huang D; Wang L; Hou J; Zhang H; Li Y; Zhong S; Wang Y; Wu Y; Huang W J Colloid Interface Sci; 2020 Aug; 574():162-173. PubMed ID: 32311538 [TBL] [Abstract][Full Text] [Related]
7. Biocompatibility evaluation of a 3D-bioprinted alginate-GelMA-bacteria nanocellulose (BNC) scaffold laden with oriented-growth RSC96 cells. Wu Z; Xie S; Kang Y; Shan X; Li Q; Cai Z Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112393. PubMed ID: 34579912 [TBL] [Abstract][Full Text] [Related]
8. Protocols of 3D Bioprinting of Gelatin Methacryloyl Hydrogel Based Bioinks. Xie M; Yu K; Sun Y; Shao L; Nie J; Gao Q; Qiu J; Fu J; Chen Z; He Y J Vis Exp; 2019 Dec; (154):. PubMed ID: 31904016 [TBL] [Abstract][Full Text] [Related]
9. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy. Yin J; Yan M; Wang Y; Fu J; Suo H ACS Appl Mater Interfaces; 2018 Feb; 10(8):6849-6857. PubMed ID: 29405059 [TBL] [Abstract][Full Text] [Related]
10. Multi-material 3D bioprinting of porous constructs for cartilage regeneration. Ruiz-Cantu L; Gleadall A; Faris C; Segal J; Shakesheff K; Yang J Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110578. PubMed ID: 32228894 [TBL] [Abstract][Full Text] [Related]
11. 3D bioprinting of a stem cell-laden, multi-material tubular composite: An approach for spinal cord repair. Hamid OA; Eltaher HM; Sottile V; Yang J Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111707. PubMed ID: 33545866 [TBL] [Abstract][Full Text] [Related]
12. Visible Light Photoinitiation of Cell-Adhesive Gelatin Methacryloyl Hydrogels for Stereolithography 3D Bioprinting. Wang Z; Kumar H; Tian Z; Jin X; Holzman JF; Menard F; Kim K ACS Appl Mater Interfaces; 2018 Aug; 10(32):26859-26869. PubMed ID: 30024722 [TBL] [Abstract][Full Text] [Related]
13. Three-Dimensional Bioprinting of Oppositely Charged Hydrogels with Super Strong Interface Bonding. Li H; Tan YJ; Liu S; Li L ACS Appl Mater Interfaces; 2018 Apr; 10(13):11164-11174. PubMed ID: 29517901 [TBL] [Abstract][Full Text] [Related]
14. Progress in cardiac tissue engineering and regeneration: Implications of gelatin-based hybrid scaffolds. Asl SK; Rahimzadegan M; Asl AK Int J Biol Macromol; 2024 Mar; 261(Pt 2):129924. PubMed ID: 38311143 [TBL] [Abstract][Full Text] [Related]
15. Neural stem cell-laden 3D bioprinting of polyphenol-doped electroconductive hydrogel scaffolds for enhanced neuronal differentiation. Song S; Liu X; Huang J; Zhang Z Biomater Adv; 2022 Feb; 133():112639. PubMed ID: 35527143 [TBL] [Abstract][Full Text] [Related]
16. Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks. Cidonio G; Alcala-Orozco CR; Lim KS; Glinka M; Mutreja I; Kim YH; Dawson JI; Woodfield TBF; Oreffo ROC Biofabrication; 2019 Jun; 11(3):035027. PubMed ID: 30991370 [TBL] [Abstract][Full Text] [Related]
17. Promoting 3D neuronal differentiation in hydrogel for spinal cord regeneration. Zhou P; Xu P; Guan J; Zhang C; Chang J; Yang F; Xiao H; Sun H; Zhang Z; Wang M; Hu J; Mao Y Colloids Surf B Biointerfaces; 2020 Oct; 194():111214. PubMed ID: 32599502 [TBL] [Abstract][Full Text] [Related]
18. 3D bioprinted neural tissue constructs for spinal cord injury repair. Liu X; Hao M; Chen Z; Zhang T; Huang J; Dai J; Zhang Z Biomaterials; 2021 May; 272():120771. PubMed ID: 33798962 [TBL] [Abstract][Full Text] [Related]
19. Recent advances on 3D-bioprinted gelatin methacrylate hydrogels for tissue engineering in wound healing: A review of current applications and future prospects. Wang H; Wan J; Zhang Z; Hou R Int Wound J; 2024 Apr; 21(4):e14533. PubMed ID: 38069620 [TBL] [Abstract][Full Text] [Related]
20. GelMA-based bioactive hydrogel scaffolds with multiple bone defect repair functions: therapeutic strategies and recent advances. Zhou B; Jiang X; Zhou X; Tan W; Luo H; Lei S; Yang Y Biomater Res; 2023 Sep; 27(1):86. PubMed ID: 37715230 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]