These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 29461669)

  • 1. Heat Shock Protein Reports on Proteome Stress.
    Liu Y; Zhang X
    Biotechnol J; 2018 Apr; 13(4):. PubMed ID: 29461669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Molecular Rotor-Based Halo-Tag Ligand Enables a Fluorogenic Proteome Stress Sensor to Detect Protein Misfolding in Mildly Stressed Proteome.
    Fares M; Li Y; Liu Y; Miao K; Gao Z; Zhai Y; Zhang X
    Bioconjug Chem; 2018 Jan; 29(1):215-224. PubMed ID: 29251907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence Turn-On Folding Sensor To Monitor Proteome Stress in Live Cells.
    Liu Y; Zhang X; Chen W; Tan YL; Kelly JW
    J Am Chem Soc; 2015 Sep; 137(35):11303-11. PubMed ID: 26305239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A HaloTag-Based Multicolor Fluorogenic Sensor Visualizes and Quantifies Proteome Stress in Live Cells Using Solvatochromic and Molecular Rotor-Based Fluorophores.
    Liu Y; Miao K; Li Y; Fares M; Chen S; Zhang X
    Biochemistry; 2018 Aug; 57(31):4663-4674. PubMed ID: 29474059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Widespread remodeling of proteome solubility in response to different protein homeostasis stresses.
    Sui X; Pires DEV; Ormsby AR; Cox D; Nie S; Vecchi G; Vendruscolo M; Ascher DB; Reid GE; Hatters DM
    Proc Natl Acad Sci U S A; 2020 Feb; 117(5):2422-2431. PubMed ID: 31964829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring Proteome Stress in Live Cells Using HaloTag-Based Fluorogenic Sensor.
    Liu Y; Fares M; Zhang X
    Methods Mol Biol; 2019; 1873():171-182. PubMed ID: 30341609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical Biology Framework to Illuminate Proteostasis.
    Sebastian RM; Shoulders MD
    Annu Rev Biochem; 2020 Jun; 89():529-555. PubMed ID: 32097570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Chemical Biology of Molecular Chaperones--Implications for Modulation of Proteostasis.
    Brandvold KR; Morimoto RI
    J Mol Biol; 2015 Sep; 427(18):2931-47. PubMed ID: 26003923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A biosensor-based framework to measure latent proteostasis capacity.
    Wood RJ; Ormsby AR; Radwan M; Cox D; Sharma A; Vöpel T; Ebbinghaus S; Oliveberg M; Reid GE; Dickson A; Hatters DM
    Nat Commun; 2018 Jan; 9(1):287. PubMed ID: 29348634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic control of the proteotoxic stress response: implications in diabetes mellitus and neurodegenerative disorders.
    Su KH; Dai C
    Cell Mol Life Sci; 2016 Nov; 73(22):4231-4248. PubMed ID: 27289378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organismal Protein Homeostasis Mechanisms.
    Hoppe T; Cohen E
    Genetics; 2020 Aug; 215(4):889-901. PubMed ID: 32759342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interplay of Proteostasis Capacity and Protein Aggregation: Implications for Cellular Function and Disease.
    Hipp MS; Hartl FU
    J Mol Biol; 2024 Jul; 436(14):168615. PubMed ID: 38759929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of cell-non-autonomous proteostasis in metazoans.
    O'Brien D; van Oosten-Hawle P
    Essays Biochem; 2016 Oct; 60(2):133-142. PubMed ID: 27744329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The intrinsic and extrinsic factors that contribute to proteostasis decline and pathological protein misfolding.
    Kikis EA
    Adv Protein Chem Struct Biol; 2019; 118():145-161. PubMed ID: 31928724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Fluorescence-Based Sensor Assay that Monitors General Protein Aggregation in Human Cells.
    Pereira M; Tomé D; Domingues AS; Varanda AS; Paulo C; Santos MAS; Soares AR
    Biotechnol J; 2018 Apr; 13(4):e1700676. PubMed ID: 29345424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical and biological approaches for adapting proteostasis to ameliorate protein misfolding and aggregation diseases: progress and prognosis.
    Lindquist SL; Kelly JW
    Cold Spring Harb Perspect Biol; 2011 Dec; 3(12):. PubMed ID: 21900404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteostasis impairment in protein-misfolding and -aggregation diseases.
    Hipp MS; Park SH; Hartl FU
    Trends Cell Biol; 2014 Sep; 24(9):506-14. PubMed ID: 24946960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heat shock response and autophagy--cooperation and control.
    Dokladny K; Myers OB; Moseley PL
    Autophagy; 2015; 11(2):200-13. PubMed ID: 25714619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Proteome Folding Problem and Cellular Proteostasis.
    Powers ET; Gierasch LM
    J Mol Biol; 2021 Oct; 433(20):167197. PubMed ID: 34391802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-Nonautonomous Regulation of Proteostasis in Aging and Disease.
    Morimoto RI
    Cold Spring Harb Perspect Biol; 2020 Apr; 12(4):. PubMed ID: 30962274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.