These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 29461669)
61. Maintaining a Healthy Proteome during Oxidative Stress. Reichmann D; Voth W; Jakob U Mol Cell; 2018 Jan; 69(2):203-213. PubMed ID: 29351842 [TBL] [Abstract][Full Text] [Related]
62. [Mechanisms of Protein Homeostasis Regulation in Cancer Development]. Trčka F; Müller P; Vojtěšek B Klin Onkol; 2016; 29 Suppl 4(Suppl 4):18-24. PubMed ID: 27846716 [TBL] [Abstract][Full Text] [Related]
63. Proteome Stability as a Key Factor of Genome Integrity. Gumeni S; Evangelakou Z; Gorgoulis VG; Trougakos IP Int J Mol Sci; 2017 Sep; 18(10):. PubMed ID: 28937603 [TBL] [Abstract][Full Text] [Related]
64. Shaping proteostasis at the cellular, tissue, and organismal level. Sala AJ; Bott LC; Morimoto RI J Cell Biol; 2017 May; 216(5):1231-1241. PubMed ID: 28400444 [TBL] [Abstract][Full Text] [Related]
65. Stress-Activated Chaperones: A First Line of Defense. Voth W; Jakob U Trends Biochem Sci; 2017 Nov; 42(11):899-913. PubMed ID: 28893460 [TBL] [Abstract][Full Text] [Related]
66. Proteome stability, heat hardening and heat-shock protein expression profiles in Willot Q; Gueydan C; Aron S J Exp Biol; 2017 May; 220(Pt 9):1721-1728. PubMed ID: 28232398 [TBL] [Abstract][Full Text] [Related]
67. Spatially organized aggregation of misfolded proteins as cellular stress defense strategy. Miller SB; Mogk A; Bukau B J Mol Biol; 2015 Apr; 427(7):1564-74. PubMed ID: 25681695 [TBL] [Abstract][Full Text] [Related]
68. Molecular chaperone dysfunction in neurodegenerative diseases and effects of curcumin. Maiti P; Manna J; Veleri S; Frautschy S Biomed Res Int; 2014; 2014():495091. PubMed ID: 25386560 [TBL] [Abstract][Full Text] [Related]
69. Molecular chaperones and protein quality control: an introduction to the JBC Reviews thematic series. Buchner J J Biol Chem; 2019 Feb; 294(6):2074-2075. PubMed ID: 30626733 [TBL] [Abstract][Full Text] [Related]
70. AgHalo: A Facile Fluorogenic Sensor to Detect Drug-Induced Proteome Stress. Liu Y; Fares M; Dunham NP; Gao Z; Miao K; Jiang X; Bollinger SS; Boal AK; Zhang X Angew Chem Int Ed Engl; 2017 Jul; 56(30):8672-8676. PubMed ID: 28557281 [TBL] [Abstract][Full Text] [Related]
71. Mutation of amino acids 566-572 (KKKVLDK) inhibits nuclear accumulation of heat shock protein 72 after heat shock. Knowlton AA J Mol Cell Cardiol; 2001 Jan; 33(1):49-55. PubMed ID: 11133222 [TBL] [Abstract][Full Text] [Related]
72. A proteostasis network safeguards the chloroplast proteome. Llamas E; Pulido P Essays Biochem; 2022 Aug; 66(2):219-228. PubMed ID: 35670042 [TBL] [Abstract][Full Text] [Related]
74. Molecular chaperone functions in protein folding and proteostasis. Kim YE; Hipp MS; Bracher A; Hayer-Hartl M; Hartl FU Annu Rev Biochem; 2013; 82():323-55. PubMed ID: 23746257 [TBL] [Abstract][Full Text] [Related]
75. Progressing neurobiological strategies against proteostasis failure: Challenges in neurodegeneration. Amanullah A; Upadhyay A; Joshi V; Mishra R; Jana NR; Mishra A Prog Neurobiol; 2017 Dec; 159():1-38. PubMed ID: 28870769 [TBL] [Abstract][Full Text] [Related]
76. Size doesn't matter in the heat shock response. Pincus D Curr Genet; 2017 May; 63(2):175-178. PubMed ID: 27502399 [TBL] [Abstract][Full Text] [Related]
77. Understanding organellar protein folding capacities and assessing their pharmacological modulation by small molecules. Sharma R; Pramanik MMD; Chandramouli B; Rastogi N; Kumar N Eur J Cell Biol; 2018 Mar; 97(2):114-125. PubMed ID: 29395478 [TBL] [Abstract][Full Text] [Related]
78. Insect heat shock proteins during stress and diapause. King AM; MacRae TH Annu Rev Entomol; 2015 Jan; 60():59-75. PubMed ID: 25341107 [TBL] [Abstract][Full Text] [Related]
79. How does the neuronal proteostasis network react to cellular cues? Nam KH; Ordureau A Biochem Soc Trans; 2024 Apr; 52(2):581-592. PubMed ID: 38488108 [TBL] [Abstract][Full Text] [Related]