BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 29462345)

  • 1. Dynamics of metabolic responses to periods of combined heat and drought in Arabidopsis thaliana under ambient and elevated atmospheric CO2.
    Zinta G; AbdElgawad H; Peshev D; Weedon JT; Van den Ende W; Nijs I; Janssens IA; Beemster GTS; Asard H
    J Exp Bot; 2018 Apr; 69(8):2159-2170. PubMed ID: 29462345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological, biochemical, and genome-wide transcriptional analysis reveals that elevated CO2 mitigates the impact of combined heat wave and drought stress in Arabidopsis thaliana at multiple organizational levels.
    Zinta G; AbdElgawad H; Domagalska MA; Vergauwen L; Knapen D; Nijs I; Janssens IA; Beemster GT; Asard H
    Glob Chang Biol; 2014 Dec; 20(12):3670-85. PubMed ID: 24802996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elevated carbon dioxide decreases the adverse effects of higher temperature and drought stress by mitigating oxidative stress and improving water status in Arabidopsis thaliana.
    Abo Gamar MI; Kisiala A; Emery RJN; Yeung EC; Stone SL; Qaderi MM
    Planta; 2019 Oct; 250(4):1191-1214. PubMed ID: 31190116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elevated CO
    AbdElgawad H; Zinta G; Hornbacher J; Papenbrock J; Markakis MN; Asard H; Beemster GTS
    Plant Cell Environ; 2023 Mar; 46(3):812-830. PubMed ID: 36541032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of small coding genes on the circadian rhythms under elevated CO
    Higuchi-Takeuchi M; Kondo T; Shimizu M; Kim YW; Shinozaki K; Hanada K
    Plant Mol Biol; 2020 Sep; 104(1-2):55-65. PubMed ID: 32572798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks.
    Prasch CM; Sonnewald U
    Plant Physiol; 2013 Aug; 162(4):1849-66. PubMed ID: 23753177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hot drought reduces the effects of elevated CO
    Birami B; Nägele T; Gattmann M; Preisler Y; Gast A; Arneth A; Ruehr NK
    New Phytol; 2020 Jun; 226(6):1607-1621. PubMed ID: 32017113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sugar-induced de novo cytokinin biosynthesis contributes to Arabidopsis growth under elevated CO
    Kiba T; Takebayashi Y; Kojima M; Sakakibara H
    Sci Rep; 2019 May; 9(1):7765. PubMed ID: 31123308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationships between drought, heat and air humidity responses revealed by transcriptome-metabolome co-analysis.
    Georgii E; Jin M; Zhao J; Kanawati B; Schmitt-Kopplin P; Albert A; Winkler JB; Schäffner AR
    BMC Plant Biol; 2017 Jul; 17(1):120. PubMed ID: 28693422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arabidopsis PED2 positively modulates plant drought stress resistance.
    Shi H; Ye T; Yang F; Chan Z
    J Integr Plant Biol; 2015 Sep; 57(9):796-806. PubMed ID: 25588806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Jasmonate-mediated stomatal closure under elevated CO
    Geng S; Misra BB; de Armas E; Huhman DV; Alborn HT; Sumner LW; Chen S
    Plant J; 2016 Dec; 88(6):947-962. PubMed ID: 27500669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elevated CO2 increases the abundance of the peach aphid on Arabidopsis by reducing jasmonic acid defenses.
    Sun Y; Guo H; Zhu-Salzman K; Ge F
    Plant Sci; 2013 Sep; 210():128-40. PubMed ID: 23849120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drought stress induces a biphasic NO accumulation in Arabidopsis thaliana.
    Ederli L; Bianchet C; Paolocci F; Alqurashi M; Gehring C; Pasqualini S
    Plant Signal Behav; 2019; 14(3):e1573098. PubMed ID: 30727813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Industrial-age changes in atmospheric [CO2] and temperature differentially alter responses of faster- and slower-growing Eucalyptus seedlings to short-term drought.
    Lewis JD; Smith RA; Ghannoum O; Logan BA; Phillips NG; Tissue DT
    Tree Physiol; 2013 May; 33(5):475-88. PubMed ID: 23677118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoassimilation, assimilate translocation and plasmodesmal biogenesis in the source leaves of Arabidopsis thaliana grown under an increased atmospheric CO2 concentration.
    Duan Z; Homma A; Kobayashi M; Nagata N; Kaneko Y; Fujiki Y; Nishida I
    Plant Cell Physiol; 2014 Feb; 55(2):358-69. PubMed ID: 24406629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid transcriptional and metabolic regulation of the deacclimation process in cold acclimated Arabidopsis thaliana.
    Pagter M; Alpers J; Erban A; Kopka J; Zuther E; Hincha DK
    BMC Genomics; 2017 Sep; 18(1):731. PubMed ID: 28915789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome analysis reveals absence of unintended effects in drought-tolerant transgenic plants overexpressing the transcription factor ABF3.
    Abdeen A; Schnell J; Miki B
    BMC Genomics; 2010 Jan; 11():69. PubMed ID: 20105335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of atmospheric carbon dioxide levels and nitrate fertilization on glucosinolate biosynthesis in mechanically damaged Arabidopsis plants.
    Paudel JR; Amirizian A; Krosse S; Giddings J; Ismail SA; Xia J; Gloer JB; van Dam NM; Bede JC
    BMC Plant Biol; 2016 Mar; 16():68. PubMed ID: 27001610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. T-DNA insertion in aquaporin gene AtPIP1;2 generates transcription profiles reminiscent of a low CO2 response.
    Boudichevskaia A; Heckwolf M; Kaldenhoff R
    Plant Cell Environ; 2015 Nov; 38(11):2286-98. PubMed ID: 25850563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of metabolic states of Arabidopsis thaliana under diverse carbon and nitrogen nutrient conditions via targeted metabolomic analysis.
    Sato S; Yanagisawa S
    Plant Cell Physiol; 2014 Feb; 55(2):306-19. PubMed ID: 24343996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.