BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 29462498)

  • 1. Odorant Receptor 7D4 Activation Dynamics.
    de March CA; Topin J; Bruguera E; Novikov G; Ikegami K; Matsunami H; Golebiowski J
    Angew Chem Int Ed Engl; 2018 Apr; 57(17):4554-4558. PubMed ID: 29462498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mammalian class I odorant receptors exhibit a conserved vestibular-binding pocket.
    Bushdid C; de March CA; Topin J; Do M; Matsunami H; Golebiowski J
    Cell Mol Life Sci; 2019 Mar; 76(5):995-1004. PubMed ID: 30599066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exchanging ligand-binding specificity between a pair of mouse olfactory receptor paralogs reveals odorant recognition principles.
    Baud O; Yuan S; Veya L; Filipek S; Vogel H; Pick H
    Sci Rep; 2015 Oct; 5():14948. PubMed ID: 26449412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic variation of an odorant receptor OR7D4 and sensory perception of cooked meat containing androstenone.
    Lunde K; Egelandsdal B; Skuterud E; Mainland JD; Lea T; Hersleth M; Matsunami H
    PLoS One; 2012; 7(5):e35259. PubMed ID: 22567099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic variation in a human odorant receptor alters odour perception.
    Keller A; Zhuang H; Chi Q; Vosshall LB; Matsunami H
    Nature; 2007 Sep; 449(7161):468-72. PubMed ID: 17873857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular modelling of odorant/olfactory receptor complexes.
    Charlier L; Topin J; de March CA; Lai PC; Crasto CJ; Golebiowski J
    Methods Mol Biol; 2013; 1003():53-65. PubMed ID: 23585033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conserved Residues Control Activation of Mammalian G Protein-Coupled Odorant Receptors.
    de March CA; Yu Y; Ni MJ; Adipietro KA; Matsunami H; Ma M; Golebiowski J
    J Am Chem Soc; 2015 Jul; 137(26):8611-8616. PubMed ID: 26090619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A computational microscope focused on the sense of smell.
    de March CA; Golebiowski J
    Biochimie; 2014 Dec; 107 Pt A():3-10. PubMed ID: 24952349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracellular loop 2 of G protein-coupled olfactory receptors is critical for odorant recognition.
    Yu Y; Ma Z; Pacalon J; Xu L; Li W; Belloir C; Topin J; Briand L; Golebiowski J; Cong X
    J Biol Chem; 2022 Sep; 298(9):102331. PubMed ID: 35926708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Basis of Mammalian Odor Discrimination: A Status Report.
    Block E
    J Agric Food Chem; 2018 Dec; 66(51):13346-13366. PubMed ID: 30453735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How Far Does a Receptor Influence Vibrational Properties of an Odorant?
    Reese A; List NH; Kongsted J; Solov'yov IA
    PLoS One; 2016; 11(3):e0152345. PubMed ID: 27014869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical Models and In Vitro Assays to Study Odorant Receptors.
    Bushdid C; de March CA; Matsunami H; Golebiowski J
    Methods Mol Biol; 2018; 1820():77-93. PubMed ID: 29884939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis of odorant recognition by a human odorant receptor.
    Billesbølle CB; de March CA; van der Velden WJC; Ma N; Tewari J; Del Torrent CL; Li L; Faust B; Vaidehi N; Matsunami H; Manglik A
    Nature; 2023 Mar; 615(7953):742-749. PubMed ID: 36922591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scents and sense: in silico perspectives on olfactory receptors.
    Don CG; Riniker S
    J Comput Chem; 2014 Dec; 35(32):2279-87. PubMed ID: 25327850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural instability and divergence from conserved residues underlie intracellular retention of mammalian odorant receptors.
    Ikegami K; de March CA; Nagai MH; Ghosh S; Do M; Sharma R; Bruguera ES; Lu YE; Fukutani Y; Vaidehi N; Yohda M; Matsunami H
    Proc Natl Acad Sci U S A; 2020 Feb; 117(6):2957-2967. PubMed ID: 31974307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The molecular basis for ligand specificity in a mouse olfactory receptor: a network of functionally important residues.
    Abaffy T; Malhotra A; Luetje CW
    J Biol Chem; 2007 Jan; 282(2):1216-24. PubMed ID: 17114180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of a ligand-binding niche within a human olfactory receptor by combining site-directed mutagenesis with dynamic homology modeling.
    Gelis L; Wolf S; Hatt H; Neuhaus EM; Gerwert K
    Angew Chem Int Ed Engl; 2012 Jan; 51(5):1274-8. PubMed ID: 22144177
    [No Abstract]   [Full Text] [Related]  

  • 18. Molecular similarities in the ligand binding pockets of an odorant receptor and the metabotropic glutamate receptors.
    Kuang D; Yao Y; Wang M; Pattabiraman N; Kotra LP; Hampson DR
    J Biol Chem; 2003 Oct; 278(43):42551-9. PubMed ID: 12912984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amino acids involved in conformational dynamics and G protein coupling of an odorant receptor: targeting gain-of-function mutation.
    Kato A; Katada S; Touhara K
    J Neurochem; 2008 Dec; 107(5):1261-70. PubMed ID: 18803693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Agonists of G-Protein-Coupled Odorant Receptors Are Predicted from Chemical Features.
    Bushdid C; de March CA; Fiorucci S; Matsunami H; Golebiowski J
    J Phys Chem Lett; 2018 May; 9(9):2235-2240. PubMed ID: 29648835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.