These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 29462695)

  • 1. A 3D intestinal tissue model supports Clostridioides difficile germination, colonization, toxin production and epithelial damage.
    Shaban L; Chen Y; Fasciano AC; Lin Y; Kaplan DL; Kumamoto CA; Mecsas J
    Anaerobe; 2018 Apr; 50():85-92. PubMed ID: 29462695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Entry of spores into intestinal epithelial cells contributes to recurrence of Clostridioides difficile infection.
    Castro-Córdova P; Mora-Uribe P; Reyes-Ramírez R; Cofré-Araneda G; Orozco-Aguilar J; Brito-Silva C; Mendoza-León MJ; Kuehne SA; Minton NP; Pizarro-Guajardo M; Paredes-Sabja D
    Nat Commun; 2021 Feb; 12(1):1140. PubMed ID: 33602902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-spore germination analyses reveal that calcium released during
    Ribis JW; Melo L; Shrestha S; Giacalone D; Rodriguez EE; Shen A; Rohlfing A
    mSphere; 2023 Aug; 8(4):e0000523. PubMed ID: 37338207
    [No Abstract]   [Full Text] [Related]  

  • 4. Fate of ingested Clostridium difficile spores in mice.
    Howerton A; Patra M; Abel-Santos E
    PLoS One; 2013; 8(8):e72620. PubMed ID: 24023628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of toxins in Clostridium difficile infection.
    Chandrasekaran R; Lacy DB
    FEMS Microbiol Rev; 2017 Nov; 41(6):723-750. PubMed ID: 29048477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human intestinal enteroids as a model of
    Engevik MA; Danhof HA; Chang-Graham AL; Spinler JK; Engevik KA; Herrmann B; Endres BT; Garey KW; Hyser JM; Britton RA; Versalovic J
    Am J Physiol Gastrointest Liver Physiol; 2020 May; 318(5):G870-G888. PubMed ID: 32223302
    [No Abstract]   [Full Text] [Related]  

  • 7. Intestinal calcium and bile salts facilitate germination of Clostridium difficile spores.
    Kochan TJ; Somers MJ; Kaiser AM; Shoshiev MS; Hagan AK; Hastie JL; Giordano NP; Smith AD; Schubert AM; Carlson PE; Hanna PC
    PLoS Pathog; 2017 Jul; 13(7):e1006443. PubMed ID: 28704538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oritavancin does not induce Clostridium difficile germination and toxin production in hamsters or a human gut model.
    Freeman J; Marquis M; Crowther GS; Todhunter SL; Fawley WN; Chilton CH; Moeck G; Lehoux D; Wilcox MH
    J Antimicrob Chemother; 2012 Dec; 67(12):2919-26. PubMed ID: 22899803
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Zhu D; Sorg JA; Sun X
    Front Cell Infect Microbiol; 2018; 8():29. PubMed ID: 29473021
    [No Abstract]   [Full Text] [Related]  

  • 10. The microbial metabolite urolithin A reduces
    Ghosh S; Erickson D; Chua MJ; Collins J; Jala VR
    mSystems; 2024 Feb; 9(2):e0125523. PubMed ID: 38193707
    [No Abstract]   [Full Text] [Related]  

  • 11. Clostridioides difficile exploits toxin-mediated inflammation to alter the host nutritional landscape and exclude competitors from the gut microbiota.
    Fletcher JR; Pike CM; Parsons RJ; Rivera AJ; Foley MH; McLaren MR; Montgomery SA; Theriot CM
    Nat Commun; 2021 Jan; 12(1):462. PubMed ID: 33469019
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Diaz OR; Sayer CV; Popham DL; Shen A
    mSphere; 2018 Jun; 3(3):. PubMed ID: 29950380
    [No Abstract]   [Full Text] [Related]  

  • 13. Clostridioides difficile spores stimulate inflammatory cytokine responses and induce cytotoxicity in macrophages.
    Chiu PJ; Rathod J; Hong YP; Tsai PJ; Hung YP; Ko WC; Chen JW; Paredes-Sabja D; Huang IH
    Anaerobe; 2021 Aug; 70():102381. PubMed ID: 34082120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protection from Lethal Clostridioides difficile Infection via Intraspecies Competition for Cogerminant.
    Leslie JL; Jenior ML; Vendrov KC; Standke AK; Barron MR; O'Brien TJ; Unverdorben L; Thaprawat P; Bergin IL; Schloss PD; Young VB
    mBio; 2021 Mar; 12(2):. PubMed ID: 33785619
    [No Abstract]   [Full Text] [Related]  

  • 15. 2'-Fucosyllactose inhibits proliferation of
    Wiese M; Schuren FHJ; Smits WK; Kuijper EJ; Ouwens A; Heerikhuisen M; Vigsnaes L; van den Broek TJ; de Boer P; Montijn RC; van der Vossen JMBM
    Front Cell Infect Microbiol; 2022; 12():991150. PubMed ID: 36389156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using a ligate intestinal loop mouse model to investigate Clostridioides difficile adherence to the intestinal mucosa in aged mice.
    Castro-Córdova P; Mendoza-León MJ; Paredes-Sabja D
    PLoS One; 2021; 16(12):e0261081. PubMed ID: 34936648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of environmental conditions and gut microbiota on the in vitro germination and growth of Clostridioides difficile.
    Martinez E; Rodriguez C; Crèvecoeur S; Lebrun S; Delcenserie V; Taminiau B; Daube G
    FEMS Microbiol Lett; 2022 Oct; 369(1):. PubMed ID: 36066913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic evidence for the presence of putative germination receptors in Clostridium difficile spores.
    Ramirez N; Liggins M; Abel-Santos E
    J Bacteriol; 2010 Aug; 192(16):4215-22. PubMed ID: 20562307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying bacterial spore germination by single-cell impedance cytometry for assessment of host microbiota susceptibility to Clostridioides difficile infection.
    Moore JH; Salahi A; Honrado C; Warburton C; Warren CA; Swami NS
    Biosens Bioelectron; 2020 Oct; 166():112440. PubMed ID: 32745926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drivers of Clostridioides difficile hypervirulent ribotype 027 spore germination, vegetative cell growth and toxin production in vitro.
    Yuille S; Mackay WG; Morrison DJ; Tedford MC
    Clin Microbiol Infect; 2020 Jul; 26(7):941.e1-941.e7. PubMed ID: 31715298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.