These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 29463285)

  • 21. Strength training increases maximum working capacity in patients with COPD--randomized clinical trial comparing three training modalities.
    Vonbank K; Strasser B; Mondrzyk J; Marzluf BA; Richter B; Losch S; Nell H; Petkov V; Haber P
    Respir Med; 2012 Apr; 106(4):557-63. PubMed ID: 22119456
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional and muscular effects of neuromuscular electrical stimulation in patients with severe COPD: a randomized clinical trial.
    Vivodtzev I; Debigaré R; Gagnon P; Mainguy V; Saey D; Dubé A; Paré MÈ; Bélanger M; Maltais F
    Chest; 2012 Mar; 141(3):716-725. PubMed ID: 22116795
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Muscular and functional effects of partitioning exercising muscle mass in patients with chronic obstructive pulmonary disease - a study protocol for a randomized controlled trial.
    Nyberg A; Saey D; Martin M; Maltais F
    Trials; 2015 Apr; 16():194. PubMed ID: 25927288
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Skeletal muscle adaptation to endurance training in patients with chronic obstructive pulmonary disease.
    Maltais F; LeBlanc P; Simard C; Jobin J; Bérubé C; Bruneau J; Carrier L; Belleau R
    Am J Respir Crit Care Med; 1996 Aug; 154(2 Pt 1):442-7. PubMed ID: 8756820
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Epigenetics and muscle dysfunction in chronic obstructive pulmonary disease.
    Barreiro E; Gea J
    Transl Res; 2015 Jan; 165(1):61-73. PubMed ID: 24794953
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impaired training-induced angiogenesis process with loss of pericyte-endothelium interactions is associated with an abnormal capillary remodelling in the skeletal muscle of COPD patients.
    Blervaque L; Passerieux E; Pomiès P; Catteau M; Héraud N; Blaquière M; Bughin F; Ayoub B; Molinari N; Cristol JP; Perez-Martin A; Mercier J; Hayot M; Gouzi F
    Respir Res; 2019 Dec; 20(1):278. PubMed ID: 31806021
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular and biological pathways of skeletal muscle dysfunction in chronic obstructive pulmonary disease.
    Barreiro E; Gea J
    Chron Respir Dis; 2016 Aug; 13(3):297-311. PubMed ID: 27056059
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Loss of quadriceps muscle oxidative phenotype and decreased endurance in patients with mild-to-moderate COPD.
    van den Borst B; Slot IG; Hellwig VA; Vosse BA; Kelders MC; Barreiro E; Schols AM; Gosker HR
    J Appl Physiol (1985); 2013 May; 114(9):1319-28. PubMed ID: 22815389
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of acute hyperoxia during exercise on quadriceps electrical activity in active COPD patients.
    Gosselin N; Durand F; Poulain M; Lambert K; Ceugniet F; Préfaut C; Varray A
    Acta Physiol Scand; 2004 Jul; 181(3):333-43. PubMed ID: 15196094
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Skeletal muscles in chronic obstructive pulmonary disease: deconditioning, or myopathy?
    Wagner PD
    Respirology; 2006 Nov; 11(6):681-6. PubMed ID: 17052294
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Different Training-Induced Skeletal Muscle Adaptations in COPD Patients with and without Alpha-1 Antitrypsin Deficiency.
    Jarosch I; Gehlert S; Jacko D; Koczulla RA; Wencker M; Welte T; Bloch W; Janciauskiene S; Kenn K
    Respiration; 2016; 92(5):339-347. PubMed ID: 27686000
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vitro and in vivo contractile properties of the vastus lateralis muscle in males with COPD.
    Debigaré R; Côte CH; Hould FS; LeBlanc P; Maltais F
    Eur Respir J; 2003 Feb; 21(2):273-8. PubMed ID: 12608441
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Skeletal muscle adaptations to interval training in patients with advanced COPD.
    Vogiatzis I; Terzis G; Nanas S; Stratakos G; Simoes DC; Georgiadou O; Zakynthinos S; Roussos C
    Chest; 2005 Dec; 128(6):3838-45. PubMed ID: 16354852
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of endurance training on skeletal muscle bioenergetics in chronic obstructive pulmonary disease.
    Sala E; Roca J; Marrades RM; Alonso J; Gonzalez De Suso JM; Moreno A; Barberá JA; Nadal J; de Jover L; Rodriguez-Roisin R; Wagner PD
    Am J Respir Crit Care Med; 1999 Jun; 159(6):1726-34. PubMed ID: 10351910
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Down-Regulation of Soluble α-Klotho is Associated with Reduction in Serum Irisin Levels in Chronic Obstructive Pulmonary Disease.
    Kureya Y; Kanazawa H; Ijiri N; Tochino Y; Watanabe T; Asai K; Hirata K
    Lung; 2016 Jun; 194(3):345-51. PubMed ID: 27140192
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of a simple prototype respiratory muscle trainer on respiratory muscle strength, quality of life and dyspnea, and oxidative stress in COPD patients: a preliminary study.
    Leelarungrayub J; Pinkaew D; Puntumetakul R; Klaphajone J
    Int J Chron Obstruct Pulmon Dis; 2017; 12():1415-1425. PubMed ID: 28553094
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sympathetic Activation is Associated with Exercise Limitation in COPD.
    Haarmann H; Folle J; Nguyen XP; Herrmann P; Heusser K; Hasenfuß G; Andreas S; Raupach T
    COPD; 2016 Oct; 13(5):589-94. PubMed ID: 26829234
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Striking similarities in systemic factors contributing to decreased exercise capacity in patients with severe chronic heart failure or COPD.
    Gosker HR; Lencer NH; Franssen FM; van der Vusse GJ; Wouters EF; Schols AM
    Chest; 2003 May; 123(5):1416-24. PubMed ID: 12740256
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ventilatory responses to muscle metaboreflex activation in chronic obstructive pulmonary disease.
    Bruce RM; Turner A; White MJ
    J Physiol; 2016 Oct; 594(20):6025-6035. PubMed ID: 27170272
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Skeletal muscle power and fatigue at the tolerable limit of ramp-incremental exercise in COPD.
    Cannon DT; Coelho AC; Cao R; Cheng A; Porszasz J; Casaburi R; Rossiter HB
    J Appl Physiol (1985); 2016 Dec; 121(6):1365-1373. PubMed ID: 27660300
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.