These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. How does the exosite of rhomboid protease affect substrate processing and inhibition? Shokhen M; Albeck A Protein Sci; 2017 Dec; 26(12):2355-2366. PubMed ID: 28884847 [TBL] [Abstract][Full Text] [Related]
8. The structural basis for catalysis and substrate specificity of a rhomboid protease. Vinothkumar KR; Strisovsky K; Andreeva A; Christova Y; Verhelst S; Freeman M EMBO J; 2010 Nov; 29(22):3797-809. PubMed ID: 20890268 [TBL] [Abstract][Full Text] [Related]
9. The intramembrane active site of GlpG, an E. coli rhomboid protease, is accessible to water and hydrolyses an extramembrane peptide bond of substrates. Maegawa S; Koide K; Ito K; Akiyama Y Mol Microbiol; 2007 Apr; 64(2):435-47. PubMed ID: 17493126 [TBL] [Abstract][Full Text] [Related]
10. The rhomboid protease GlpG has weak interaction energies in its active site hydrogen bond network. Gaffney KA; Hong H J Gen Physiol; 2019 Mar; 151(3):282-291. PubMed ID: 30420443 [TBL] [Abstract][Full Text] [Related]
11. Crystal Structures and Inhibition Kinetics Reveal a Two-Stage Catalytic Mechanism with Drug Design Implications for Rhomboid Proteolysis. Cho S; Dickey SW; Urban S Mol Cell; 2016 Feb; 61(3):329-340. PubMed ID: 26805573 [TBL] [Abstract][Full Text] [Related]
12. Domain swapping in the cytoplasmic domain of the Escherichia coli rhomboid protease. Lazareno-Saez C; Arutyunova E; Coquelle N; Lemieux MJ J Mol Biol; 2013 Apr; 425(7):1127-42. PubMed ID: 23353827 [TBL] [Abstract][Full Text] [Related]
13. The rhomboid protease family: a decade of progress on function and mechanism. Urban S; Dickey SW Genome Biol; 2011 Oct; 12(10):231. PubMed ID: 22035660 [TBL] [Abstract][Full Text] [Related]
14. Structural analysis of a rhomboid family intramembrane protease reveals a gating mechanism for substrate entry. Wu Z; Yan N; Feng L; Oberstein A; Yan H; Baker RP; Gu L; Jeffrey PD; Urban S; Shi Y Nat Struct Mol Biol; 2006 Dec; 13(12):1084-91. PubMed ID: 17099694 [TBL] [Abstract][Full Text] [Related]
15. Large lateral movement of transmembrane helix S5 is not required for substrate access to the active site of rhomboid intramembrane protease. Xue Y; Ha Y J Biol Chem; 2013 Jun; 288(23):16645-16654. PubMed ID: 23609444 [TBL] [Abstract][Full Text] [Related]
16. Structural basis for intramembrane proteolysis by rhomboid serine proteases. Ben-Shem A; Fass D; Bibi E Proc Natl Acad Sci U S A; 2007 Jan; 104(2):462-6. PubMed ID: 17190827 [TBL] [Abstract][Full Text] [Related]
17. A new class of rhomboid protease inhibitors discovered by activity-based fluorescence polarization. Wolf EV; Zeißler A; Vosyka O; Zeiler E; Sieber S; Verhelst SH PLoS One; 2013; 8(8):e72307. PubMed ID: 23991088 [TBL] [Abstract][Full Text] [Related]
18. Influence of hydrophobic mismatch on the catalytic activity of Escherichia coli GlpG rhomboid protease. Foo AC; Harvey BG; Metz JJ; Goto NK Protein Sci; 2015 Apr; 24(4):464-73. PubMed ID: 25307614 [TBL] [Abstract][Full Text] [Related]
19. Sequence features of substrates required for cleavage by GlpG, an Escherichia coli rhomboid protease. Akiyama Y; Maegawa S Mol Microbiol; 2007 May; 64(4):1028-37. PubMed ID: 17501925 [TBL] [Abstract][Full Text] [Related]
20. Activity-based probes for rhomboid proteases discovered in a mass spectrometry-based assay. Vosyka O; Vinothkumar KR; Wolf EV; Brouwer AJ; Liskamp RM; Verhelst SH Proc Natl Acad Sci U S A; 2013 Feb; 110(7):2472-7. PubMed ID: 23359682 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]