These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 29463739)

  • 1. Synthetic addiction extends the productive life time of engineered
    Rugbjerg P; Sarup-Lytzen K; Nagy M; Sommer MOA
    Proc Natl Acad Sci U S A; 2018 Mar; 115(10):2347-2352. PubMed ID: 29463739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diverse genetic error modes constrain large-scale bio-based production.
    Rugbjerg P; Myling-Petersen N; Porse A; Sarup-Lytzen K; Sommer MOA
    Nat Commun; 2018 Feb; 9(1):787. PubMed ID: 29463788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recoded organisms engineered to depend on synthetic amino acids.
    Rovner AJ; Haimovich AD; Katz SR; Li Z; Grome MW; Gassaway BM; Amiram M; Patel JR; Gallagher RR; Rinehart J; Isaacs FJ
    Nature; 2015 Feb; 518(7537):89-93. PubMed ID: 25607356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel MVA-mediated pathway for isoprene production in engineered E. coli.
    Yang J; Nie Q; Liu H; Xian M; Liu H
    BMC Biotechnol; 2016 Jan; 16():5. PubMed ID: 26786050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tailoring cellular metabolism in lactic acid bacteria through metabolic engineering.
    Sharma A; Gupta G; Ahmad T; Kaur B; Hakeem KR
    J Microbiol Methods; 2020 Mar; 170():105862. PubMed ID: 32032637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromosome engineering of Escherichia coli for constitutive production of salvianic acid A.
    Zhou L; Ding Q; Jiang GZ; Liu ZN; Wang HY; Zhao GR
    Microb Cell Fact; 2017 May; 16(1):84. PubMed ID: 28511681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering Escherichia coli coculture systems for the production of biochemical products.
    Zhang H; Pereira B; Li Z; Stephanopoulos G
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):8266-71. PubMed ID: 26111796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constructing a synthetic constitutive metabolic pathway in Escherichia coli for (R, R)-2,3-butanediol production.
    Tong YJ; Ji XJ; Shen MQ; Liu LG; Nie ZK; Huang H
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):637-47. PubMed ID: 26428232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic Evolution of Metabolic Productivity Using Biosensors.
    Williams TC; Pretorius IS; Paulsen IT
    Trends Biotechnol; 2016 May; 34(5):371-381. PubMed ID: 26948437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Butyrate production in engineered Escherichia coli with synthetic scaffolds.
    Baek JM; Mazumdar S; Lee SW; Jung MY; Lim JH; Seo SW; Jung GY; Oh MK
    Biotechnol Bioeng; 2013 Oct; 110(10):2790-4. PubMed ID: 23568786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Improving isoprene production by engineered heterologous mevalonate pathway in Escherichia coli].
    Feng F; Xu Y; Tao Y; Liu W; Lin B
    Sheng Wu Gong Cheng Xue Bao; 2015 Jul; 31(7):1073-81. PubMed ID: 26647582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A framework for the identification of promising bio-based chemicals.
    Wu W; Long MR; Zhang X; Reed JL; Maravelias CT
    Biotechnol Bioeng; 2018 Sep; 115(9):2328-2340. PubMed ID: 29940066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of Escherichia coli for production of valerenadiene.
    Nybo SE; Saunders J; McCormick SP
    J Biotechnol; 2017 Nov; 262():60-66. PubMed ID: 28988031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-Free Mixing of Escherichia coli Crude Extracts to Prototype and Rationally Engineer High-Titer Mevalonate Synthesis.
    Dudley QM; Anderson KC; Jewett MC
    ACS Synth Biol; 2016 Dec; 5(12):1578-1588. PubMed ID: 27476989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering of a Highly Efficient Escherichia coli Strain for Mevalonate Fermentation through Chromosomal Integration.
    Wang J; Niyompanich S; Tai YS; Wang J; Bai W; Mahida P; Gao T; Zhang K
    Appl Environ Microbiol; 2016 Dec; 82(24):7176-7184. PubMed ID: 27736790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overcoming genetic heterogeneity in industrial fermentations.
    Rugbjerg P; Sommer MOA
    Nat Biotechnol; 2019 Aug; 37(8):869-876. PubMed ID: 31285593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfacing Biocompatible Reactions with Engineered Escherichia coli.
    Wallace S; Balskus EP
    Methods Mol Biol; 2017; 1586():409-421. PubMed ID: 28470621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of microbial cell factories for bio-refinery through synthetic bioengineering.
    Kondo A; Ishii J; Hara KY; Hasunuma T; Matsuda F
    J Biotechnol; 2013 Jan; 163(2):204-16. PubMed ID: 22728424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systems metabolic engineering of Corynebacterium glutamicum for the production of the carbon-5 platform chemicals 5-aminovalerate and glutarate.
    Rohles CM; Gießelmann G; Kohlstedt M; Wittmann C; Becker J
    Microb Cell Fact; 2016 Sep; 15(1):154. PubMed ID: 27618862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural Product Biosynthesis in Escherichia coli: Mentha Monoterpenoids.
    Toogood HS; Tait S; Jervis A; Ní Cheallaigh A; Humphreys L; Takano E; Gardiner JM; Scrutton NS
    Methods Enzymol; 2016; 575():247-70. PubMed ID: 27417932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.