BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 29464243)

  • 1. Sensitive detection of intracellular microRNA based on a flowerlike vector with catalytic hairpin assembly.
    Liu J; Du P; Zhang J; Shen H; Lei J
    Chem Commun (Camb); 2018 Mar; 54(20):2550-2553. PubMed ID: 29464243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hairpin DNA-fueled nanoflare for simultaneous illumination of two microRNAs in drug-induced nephrotoxic cells with target catalytic recycling amplification.
    Gao H; Li J; Jia Y; Yu XA; Qi J; Tian J; Yu BY
    Analyst; 2019 Dec; 144(24):7178-7184. PubMed ID: 31647062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A DNA-Fueled and Catalytic Molecule Machine Lights Up Trace Under-Expressed MicroRNAs in Living Cells.
    Li D; Zhou W; Yuan R; Xiang Y
    Anal Chem; 2017 Sep; 89(18):9934-9940. PubMed ID: 28809475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitive Colorimetric Detection of MicroRNA Based on Target Catalyzed Double-arm Hairpin DNA Assembling.
    Tian R; Zheng X
    Anal Sci; 2016; 32(7):751-5. PubMed ID: 27396656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNAzyme Based Nanomachine for in Situ Detection of MicroRNA in Living Cells.
    Liu J; Cui M; Zhou H; Yang W
    ACS Sens; 2017 Dec; 2(12):1847-1853. PubMed ID: 29181969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gold Nanoparticle Loaded Split-DNAzyme Probe for Amplified miRNA Detection in Living Cells.
    Wu Y; Huang J; Yang X; Yang Y; Quan K; Xie N; Li J; Ma C; Wang K
    Anal Chem; 2017 Aug; 89(16):8377-8383. PubMed ID: 28718626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Label-Free Platform for MicroRNA Detection Based on the Fluorescence Quenching of Positively Charged Gold Nanoparticles to Silver Nanoclusters.
    Miao X; Cheng Z; Ma H; Li Z; Xue N; Wang P
    Anal Chem; 2018 Jan; 90(2):1098-1103. PubMed ID: 29198110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporally Controllable MicroRNA Imaging in Living Cells via a Near-Infrared Light-Activated Nanoprobe.
    Zhao X; Zhang L; Gao W; Yu X; Gu W; Fu W; Luo Y
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):35958-35966. PubMed ID: 32664719
    [No Abstract]   [Full Text] [Related]  

  • 9. Catalytic hairpin assembly-assisted lateral flow assay for visual determination of microRNA-21 using gold nanoparticles.
    Wang W; Nie A; Lu Z; Li J; Shu M; Han H
    Mikrochim Acta; 2019 Aug; 186(9):661. PubMed ID: 31471777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ratiometric fluorescent 3D DNA walker and catalyzed hairpin assembly for determination of microRNA.
    Li Q; Liang X; Mu X; Tan L; Lu J; Hu K; Zhao S; Tian J
    Mikrochim Acta; 2020 Jun; 187(6):365. PubMed ID: 32488542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hairpin-fuelled catalytic nanobeacons for amplified microRNA imaging in live cells.
    Wang J; Huang J; Quan K; Li J; Wu Y; Wei Q; Yang X; Wang K
    Chem Commun (Camb); 2018 Sep; 54(73):10336-10339. PubMed ID: 30151514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly-sensitive microRNA detection based on bio-bar-code assay and catalytic hairpin assembly two-stage amplification.
    Tang S; Gu Y; Lu H; Dong H; Zhang K; Dai W; Meng X; Yang F; Zhang X
    Anal Chim Acta; 2018 Apr; 1004():1-9. PubMed ID: 29329703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly sensitive MicroRNA 146a detection using a gold nanoparticle-based CTG repeat probing system and isothermal amplification.
    Le BH; Seo YJ
    Anal Chim Acta; 2018 Jan; 999():155-160. PubMed ID: 29254567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Dual-Signal Twinkling Probe for Fluorescence-SERS Dual Spectrum Imaging and Detection of miRNA in Single Living Cell via Absolute Value Coupling of Reciprocal Signals.
    Zhang N; Ye S; Wang Z; Li R; Wang M
    ACS Sens; 2019 Apr; 4(4):924-930. PubMed ID: 30924337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sense and Validate: Fluorophore/Mass Dual-Encoded Nanoprobes for Fluorescence Imaging and MS Quantification of Intracellular Multiple MicroRNAs.
    Xu H; Zhang Z; Wang Y; Zhang X; Zhu JJ; Min Q
    Anal Chem; 2022 Apr; 94(16):6329-6337. PubMed ID: 35412806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bio-cleavable nanoprobes for target-triggered catalytic hairpin assembly amplification detection of microRNAs in live cancer cells.
    Li D; Wu Y; Gan C; Yuan R; Xiang Y
    Nanoscale; 2018 Sep; 10(37):17623-17628. PubMed ID: 30204195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Resolution Vertical Polarization Excited Dark-Field Microscopic Imaging of Anisotropic Gold Nanorods for the Sensitive Detection and Spatial Imaging of Intracellular microRNA-21.
    Liu JJ; Yan HH; Zhang Q; Gao PF; Li CM; Liang GL; Huang CZ; Wang J
    Anal Chem; 2020 Oct; 92(19):13118-13125. PubMed ID: 32841018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular Messenger RNA Triggered Catalytic Hairpin Assembly for Fluorescence Imaging Guided Photothermal Therapy.
    Su FX; Yang CX; Yan XP
    Anal Chem; 2017 Jul; 89(14):7277-7281. PubMed ID: 28660758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic hairpin assembly-based AIEgen/graphene oxide nanocomposite for fluorescence-enhanced and high-precision spatiotemporal imaging of microRNA in living cells.
    Song Y; Mao C; Zhang W; Deng D; Chen H; Sun P; Liu M; Feng C; Luo L
    Biosens Bioelectron; 2024 Sep; 259():116416. PubMed ID: 38797033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The construction of a novel nucleic acids detection microplatform based on the NSET for one-step detecting TK1-DNA and microRNA-21.
    Zhang J; Zhao Q; Wu Y; Zhang B; Peng W; Piao J; Zhou Y; Gao W; Gong X; Chang J
    Biosens Bioelectron; 2017 Nov; 97():26-33. PubMed ID: 28549267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.