These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 29464432)

  • 1. Sharpness-Aware Low-Dose CT Denoising Using Conditional Generative Adversarial Network.
    Yi X; Babyn P
    J Digit Imaging; 2018 Oct; 31(5):655-669. PubMed ID: 29464432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Image denoising by transfer learning of generative adversarial network for dental CT.
    Hegazy MAA; Cho MH; Lee SY
    Biomed Phys Eng Express; 2020 Sep; 6(5):055024. PubMed ID: 33444255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning low-dose CT degradation from unpaired data with flow-based model.
    Liu X; Liang X; Deng L; Tan S; Xie Y
    Med Phys; 2022 Dec; 49(12):7516-7530. PubMed ID: 35880375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A performance comparison of convolutional neural network-based image denoising methods: The effect of loss functions on low-dose CT images.
    Kim B; Han M; Shim H; Baek J
    Med Phys; 2019 Sep; 46(9):3906-3923. PubMed ID: 31306488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unpaired low-dose computed tomography image denoising using a progressive cyclical convolutional neural network.
    Li Q; Li R; Li S; Wang T; Cheng Y; Zhang S; Wu W; Zhao J; Qiang Y; Wang L
    Med Phys; 2024 Feb; 51(2):1289-1312. PubMed ID: 36841936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-dose CT denoising using a Progressive Wasserstein generative adversarial network.
    Wang G; Hu X
    Comput Biol Med; 2021 Aug; 135():104625. PubMed ID: 34246157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unpaired Low-Dose CT Denoising Network Based on Cycle-Consistent Generative Adversarial Network with Prior Image Information.
    Tang C; Li J; Wang L; Li Z; Jiang L; Cai A; Zhang W; Liang N; Li L; Yan B
    Comput Math Methods Med; 2019; 2019():8639825. PubMed ID: 31885686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adapting low-dose CT denoisers for texture preservation using zero-shot local noise-level matching.
    Ko Y; Song S; Baek J; Shim H
    Med Phys; 2024 Jun; 51(6):4181-4200. PubMed ID: 38478305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An unsupervised two-step training framework for low-dose computed tomography denoising.
    Kim W; Lee J; Choi JH
    Med Phys; 2024 Feb; 51(2):1127-1144. PubMed ID: 37432026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Domain-adaptive denoising network for low-dose CT via noise estimation and transfer learning.
    Wang J; Tang Y; Wu Z; Tsui BMW; Chen W; Yang X; Zheng J; Li M
    Med Phys; 2023 Jan; 50(1):74-88. PubMed ID: 36018732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. STEDNet: Swin transformer-based encoder-decoder network for noise reduction in low-dose CT.
    Zhu L; Han Y; Xi X; Fu H; Tan S; Liu M; Yang S; Liu C; Li L; Yan B
    Med Phys; 2023 Jul; 50(7):4443-4458. PubMed ID: 36708286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-Dose CT Image Synthesis for Domain Adaptation Imaging Using a Generative Adversarial Network With Noise Encoding Transfer Learning.
    Li M; Wang J; Chen Y; Tang Y; Wu Z; Qi Y; Jiang H; Zheng J; Tsui BMW
    IEEE Trans Med Imaging; 2023 Sep; 42(9):2616-2630. PubMed ID: 37030685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pediatric evaluations for deep learning CT denoising.
    Nelson BJ; Kc P; Badal A; Jiang L; Masters SC; Zeng R
    Med Phys; 2024 Feb; 51(2):978-990. PubMed ID: 38127330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artifact correction in low-dose dental CT imaging using Wasserstein generative adversarial networks.
    Hu Z; Jiang C; Sun F; Zhang Q; Ge Y; Yang Y; Liu X; Zheng H; Liang D
    Med Phys; 2019 Apr; 46(4):1686-1696. PubMed ID: 30697765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Denoising of pediatric low dose abdominal CT using deep learning based algorithm.
    Park HS; Jeon K; Lee J; You SK
    PLoS One; 2022; 17(1):e0260369. PubMed ID: 35061701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of a deep learning-based CT image denoising method: Generalizability over dose, reconstruction kernel, and slice thickness.
    Zeng R; Lin CY; Li Q; Jiang L; Skopec M; Fessler JA; Myers KJ
    Med Phys; 2022 Feb; 49(2):836-853. PubMed ID: 34954845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-dose CT denoising with a high-level feature refinement and dynamic convolution network.
    Yang S; Pu Q; Lei C; Zhang Q; Jeon S; Yang X
    Med Phys; 2023 Jun; 50(6):3597-3611. PubMed ID: 36542402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probabilistic self-learning framework for low-dose CT denoising.
    Bai T; Wang B; Nguyen D; Jiang S
    Med Phys; 2021 May; 48(5):2258-2270. PubMed ID: 33621348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DFSNE-Net: Deviant feature sensitive noise estimate network for low-dose CT denoising.
    Liu J; Jiang H; Ning F; Li M; Pang W
    Comput Biol Med; 2022 Oct; 149():106061. PubMed ID: 36081226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-scale similarity-guided cycle generative adversarial network for unsupervised low-dose CT denoising.
    Zhao F; Liu M; Gao Z; Jiang X; Wang R; Zhang L
    Comput Biol Med; 2023 Jul; 161():107029. PubMed ID: 37230021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.