BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 29464592)

  • 1. Delivery Considerations of Highly Viscous Polymeric Fluids Mimicking Concentrated Biopharmaceuticals: Assessment of Injectability via Measurement of Total Work Done "W
    Zhang Q; Fassihi MA; Fassihi R
    AAPS PharmSciTech; 2018 May; 19(4):1520-1528. PubMed ID: 29464592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding syringeability and injectability of high molecular weight PEO solution through time-dependent force-distance profiles.
    Feng X; Wu KW; Balajee V; Leissa J; Ashraf M; Xu X
    Int J Pharm; 2023 Jan; 631():122486. PubMed ID: 36521635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Quantification of Injectability by Mechanical Testing.
    Robinson TE; Hughes EAB; Eisenstein NM; Grover LM; Cox SC
    J Vis Exp; 2020 May; (159):. PubMed ID: 32478751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing the Injectability of High Concentration Drug Formulations Using Core Annular Flows.
    Jayaprakash V; Costalonga M; Dhulipala S; Varanasi KK
    Adv Healthc Mater; 2020 Sep; 9(18):e2001022. PubMed ID: 32830449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rheological characterization and injection forces of concentrated protein formulations: an alternative predictive model for non-Newtonian solutions.
    Allmendinger A; Fischer S; Huwyler J; Mahler HC; Schwarb E; Zarraga IE; Mueller R
    Eur J Pharm Biopharm; 2014 Jul; 87(2):318-28. PubMed ID: 24560966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Injectability as a function of viscosity and dosing materials for subcutaneous administration.
    Watt RP; Khatri H; Dibble ARG
    Int J Pharm; 2019 Jan; 554():376-386. PubMed ID: 30414478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prefilled Syringe Injection Force Impact Assessment from Back Pressure: An Approach for Testing Syringe Injectability In Situ vs. In Vitro.
    Megna C; Wells O; Bonanno D; Rasheed W; Cristofolli E
    PDA J Pharm Sci Technol; 2023; 77(5):340-349. PubMed ID: 37188533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Injectability of biodegradable in situ forming microparticle systems (ISM).
    Rungseevijitprapa W; Bodmeier R
    Eur J Pharm Sci; 2009 Mar; 36(4-5):524-31. PubMed ID: 19124076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of HPMC and MC as pore formers on the rheology of the implant microenvironment and the drug release in vitro.
    Aho J; Halme A; Boetker J; Water JJ; Bohr A; Sandler N; Rantanen J; Baldursdottir S
    Carbohydr Polym; 2017 Dec; 177():433-442. PubMed ID: 28962789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow and injection characteristics of pharmaceutical parenteral formulations using a micro-capillary rheometer.
    Allahham A; Stewart P; Marriott J; Mainwaring DE
    Int J Pharm; 2004 Feb; 270(1-2):139-48. PubMed ID: 14726130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Method To Determine the Kinetics of Solute Mixing in Liquid/Liquid Formulation Dual-Chamber Syringes.
    Werk T; Mahler HC; Ludwig IS; Luemkemann J; Huwyler J; Hafner M
    PDA J Pharm Sci Technol; 2017 1/2; 71(1):2-10. PubMed ID: 27516487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Research on Gliding and Discharge Performance of Suspended Injection from Syringe -Effect of Diameter Ratio of Suspending Particle against Needle Hole on Needle Passageability].
    Niwa T; Morisaki M; Kondo K; Nakashima A
    Yakugaku Zasshi; 2020; 140(5):711-722. PubMed ID: 32378675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation the injectability of injectable microparticle delivery systems on the basis of injection force and discharged rate.
    Zhao C; Zhu Z; Cao X; Pan F; Li F; Xue M; Guo Y; Zhao Y; Zeng J; Liu Y; Yang Z; Liu Y; Ren F; Feng L
    Eur J Pharm Biopharm; 2023 Sep; 190():58-72. PubMed ID: 37437667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advancing injection force modeling and viscosity-dependent injectability evaluation for prefilled syringes.
    Wu L; Li H; Wang Y; Liu C; Zhao Z; Zhuang G; Chen Q; Zhou W; Guo J
    Eur J Pharm Biopharm; 2024 Apr; 197():114221. PubMed ID: 38378097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study on the impact of hydroxypropyl methylcellulose on the viscosity of PEG melt suspensions using surface plots and principal component analysis.
    Oh CM; Heng PW; Chan LW
    AAPS PharmSciTech; 2015 Apr; 16(2):466-77. PubMed ID: 25370022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rheological blends for drug delivery. I. Characterization in vitro.
    Hoare T; Zurakowski D; Langer R; Kohane DS
    J Biomed Mater Res A; 2010 Feb; 92(2):575-85. PubMed ID: 19235215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rheological characterization of polymeric solutions used in spray drying process.
    Porfirio T; Galindo-Rosales FJ; Campo-Deaño L; Vicente J; Semião V
    Eur J Pharm Sci; 2021 Mar; 158():105650. PubMed ID: 33276052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydroxypropyl methylcellulose: Physicochemical properties and ocular drug delivery formulations.
    Tundisi LL; Mostaço GB; Carricondo PC; Petri DFS
    Eur J Pharm Sci; 2021 Apr; 159():105736. PubMed ID: 33516807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculation of injection forces for highly concentrated protein solutions.
    Fischer I; Schmidt A; Bryant A; Besheer A
    Int J Pharm; 2015 Sep; 493(1-2):70-4. PubMed ID: 26211901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro evaluation of pluronic F127-based controlled-release ocular delivery systems for pilocarpine.
    Desai SD; Blanchard J
    J Pharm Sci; 1998 Feb; 87(2):226-30. PubMed ID: 9519158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.