BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 29464892)

  • 1. Evaluation of differences between dual salt-pH gradient elution and mono gradient elution using a thermodynamic model: Simultaneous separation of six monoclonal antibody charge and size variants on preparative-scale ion exchange chromatographic resin.
    Lee YF; Jöhnck M; Frech C
    Biotechnol Prog; 2018 Jul; 34(4):973-986. PubMed ID: 29464892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of dual gradient elution in ion exchange and mixed-mode chromatography.
    Lee YF; Schmidt M; Graalfs H; Hafner M; Frech C
    J Chromatogr A; 2015 Oct; 1417():64-72. PubMed ID: 26391873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of linear pH gradients for the modeling of ion exchange chromatography: Separation of monoclonal antibody monomer from aggregates.
    Kluters S; Wittkopp F; Jöhnck M; Frech C
    J Sep Sci; 2016 Feb; 39(4):663-75. PubMed ID: 26549715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of salt and pH gradient elution in ion-exchange chromatography.
    Schmidt M; Hafner M; Frech C
    J Sep Sci; 2014 Jan; 37(1-2):5-13. PubMed ID: 24415551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvent modulated linear pH gradient elution for the purification of conventional and bispecific antibodies: Modeling and application.
    Kluters S; Hafner M; von Hirschheydt T; Frech C
    J Chromatogr A; 2015 Oct; 1418():119-129. PubMed ID: 26431858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic modeling of protein retention in mixed-mode chromatography: An extended model for isocratic and dual gradient elution chromatography.
    Lee YF; Graalfs H; Frech C
    J Chromatogr A; 2016 Sep; 1464():87-101. PubMed ID: 27554024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic modeling of ion-exchange process chromatography of charge variants of monoclonal antibody products.
    Kumar V; Leweke S; von Lieres E; Rathore AS
    J Chromatogr A; 2015 Dec; 1426():140-53. PubMed ID: 26686559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption of monoclonal antibody variants on analytical cation-exchange resin.
    Melter L; Ströhlein G; Butté A; Morbidelli M
    J Chromatogr A; 2007 Jun; 1154(1-2):121-31. PubMed ID: 17451722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Method development for the separation of monoclonal antibody charge variants in cation exchange chromatography, Part II: pH gradient approach.
    Fekete S; Beck A; Fekete J; Guillarme D
    J Pharm Biomed Anal; 2015 Jan; 102():282-9. PubMed ID: 25459925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation model for overloaded monoclonal antibody variants separations in ion-exchange chromatography.
    Guélat B; Ströhlein G; Lattuada M; Delegrange L; Valax P; Morbidelli M
    J Chromatogr A; 2012 Aug; 1253():32-43. PubMed ID: 22795935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic interpolation method predicts protein chromatographic elution with salt gradients, pH gradients and combined salt/pH gradients.
    Creasy A; Barker G; Carta G
    Biotechnol J; 2017 Mar; 12(3):. PubMed ID: 27992113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel method for continuous chromatographic separation of monoclonal antibody charge variants by combining displacement mode chromatography and step elution.
    Anupa A; Bansode V; Kateja N; Rathore AS
    Biotechnol Prog; 2024; 40(1):e3395. PubMed ID: 37828820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid charge variant analysis of monoclonal antibodies to support lead candidate biopharmaceutical development.
    Trappe A; Füssl F; Carillo S; Zaborowska I; Meleady P; Bones J
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Sep; 1095():166-176. PubMed ID: 30077097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein adsorption on ion exchange resins and monoclonal antibody charge variant modulation.
    Guélat B; Khalaf R; Lattuada M; Costioli M; Morbidelli M
    J Chromatogr A; 2016 May; 1447():82-91. PubMed ID: 27086285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving pH gradient cation-exchange chromatography of monoclonal antibodies by controlling ionic strength.
    Zhang L; Patapoff T; Farnan D; Zhang B
    J Chromatogr A; 2013 Jan; 1272():56-64. PubMed ID: 23253120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly linear pH gradients for analyzing monoclonal antibody charge heterogeneity in the alkaline range: Validation of the method parameters.
    Lingg N; Berndtsson M; Hintersteiner B; Schuster M; Bardor M; Jungbauer A
    J Chromatogr A; 2014 Dec; 1373():124-30. PubMed ID: 25465369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Method development for the separation of monoclonal antibody charge variants in cation exchange chromatography, Part I: salt gradient approach.
    Fekete S; Beck A; Fekete J; Guillarme D
    J Pharm Biomed Anal; 2015 Jan; 102():33-44. PubMed ID: 25240157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly linear pH gradients for analyzing monoclonal antibody charge heterogeneity in the alkaline range.
    Lingg N; Tan E; Hintersteiner B; Bardor M; Jungbauer A
    J Chromatogr A; 2013 Dec; 1319():65-71. PubMed ID: 24183595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiproduct high-resolution monoclonal antibody charge variant separations by pH gradient ion-exchange chromatography.
    Farnan D; Moreno GT
    Anal Chem; 2009 Nov; 81(21):8846-57. PubMed ID: 19795895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling and simulation of protein elution in linear pH and salt gradients on weak, strong and mixed cation exchange resins applying an extended Donnan ion exchange model.
    Wittkopp F; Peeck L; Hafner M; Frech C
    J Chromatogr A; 2018 Apr; 1545():32-47. PubMed ID: 29525127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.