BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 29465235)

  • 21. Switch-On Fluorescence of a Perylene-Dye-Functionalized Metal-Organic Framework through Postsynthetic Modification.
    Dietl C; Hintz H; Rühle B; Schmedt Auf der Günne J; Langhals H; Wuttke S
    Chemistry; 2015 Jul; 21(30):10714-20. PubMed ID: 26037475
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation of Dual-Emitting Ln@UiO-66-Hybrid Films via Electrophoretic Deposition for Ratiometric Temperature Sensing.
    Feng JF; Gao SY; Liu TF; Shi J; Cao R
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):6014-6023. PubMed ID: 29359915
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Core-Shell Structures Arise Naturally During Ligand Exchange in Metal-Organic Frameworks.
    Boissonnault JA; Wong-Foy AG; Matzger AJ
    J Am Chem Soc; 2017 Oct; 139(42):14841-14844. PubMed ID: 29020774
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tuning the topology and functionality of metal-organic frameworks by ligand design.
    Zhao D; Timmons DJ; Yuan D; Zhou HC
    Acc Chem Res; 2011 Feb; 44(2):123-33. PubMed ID: 21126015
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Postsynthetic Selective Ligand Cleavage by Solid-Gas Phase Ozonolysis Fuses Micropores into Mesopores in Metal-Organic Frameworks.
    Guillerm V; Xu H; Albalad J; Imaz I; Maspoch D
    J Am Chem Soc; 2018 Nov; 140(44):15022-15030. PubMed ID: 30351020
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Postsynthetic Renaissance in Porous Solids.
    Cohen SM
    J Am Chem Soc; 2017 Mar; 139(8):2855-2863. PubMed ID: 28118009
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functionalization of metal-organic frameworks through the postsynthetic transformation of olefin side groups.
    Hindelang K; Kronast A; Vagin SI; Rieger B
    Chemistry; 2013 Jun; 19(25):8244-52. PubMed ID: 23640916
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In Situ Modification of Metal-Organic Frameworks in Mixed-Matrix Membranes.
    Denny MS; Cohen SM
    Angew Chem Int Ed Engl; 2015 Jul; 54(31):9029-32. PubMed ID: 26073065
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Systematic functionalization of a metal-organic framework via a postsynthetic modification approach.
    Tanabe KK; Wang Z; Cohen SM
    J Am Chem Soc; 2008 Jul; 130(26):8508-17. PubMed ID: 18540671
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modulating metal-organic frameworks to breathe: a postsynthetic covalent modification approach.
    Wang Z; Cohen SM
    J Am Chem Soc; 2009 Nov; 131(46):16675-7. PubMed ID: 19886623
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Orthogonal Ternary Functionalization of a Mesoporous Metal-Organic Framework via Sequential Postsynthetic Ligand Exchange.
    Liu C; Luo TY; Feura ES; Zhang C; Rosi NL
    J Am Chem Soc; 2015 Aug; 137(33):10508-11. PubMed ID: 26256310
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bipyridine- and phenanthroline-based metal-organic frameworks for highly efficient and tandem catalytic organic transformations via directed C-H activation.
    Manna K; Zhang T; Greene FX; Lin W
    J Am Chem Soc; 2015 Feb; 137(7):2665-73. PubMed ID: 25640998
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Postsynthetic Ligand Exchange of Metal-Organic Framework for Photodynamic Therapy.
    Zhao X; Zhang Z; Cai X; Ding B; Sun C; Liu G; Hu C; Shao S; Pang M
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):7884-7892. PubMed ID: 30698413
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reversible Diels-Alder and Michael Addition Reactions Enable the Facile Postsynthetic Modification of Metal-Organic Frameworks.
    Nayab S; Trouillet V; Gliemann H; Weidler PG; Azeem I; Tariq SR; Goldmann AS; Barner-Kowollik C; Yameen B
    Inorg Chem; 2021 Apr; 60(7):4397-4409. PubMed ID: 33729794
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Room temperature aqueous synthesis of UiO-66 derivatives via postsynthetic exchange.
    Kalaj M; Prosser KE; Cohen SM
    Dalton Trans; 2020 Jul; 49(26):8841-8845. PubMed ID: 32582894
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamic behaviours of a rationally prepared flexible MOF by postsynthetic modification of ligand struts.
    Xu X; Yang F; Chen SL; He J; Xu Y; Wei W
    Chem Commun (Camb); 2017 Mar; 53(22):3220-3223. PubMed ID: 28251202
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Defect Engineering into Metal-Organic Frameworks for the Rapid and Sequential Installation of Functionalities.
    Park H; Kim S; Jung B; Park MH; Kim Y; Kim M
    Inorg Chem; 2018 Feb; 57(3):1040-1047. PubMed ID: 29303561
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A metal-organic framework containing unusual eight-connected Zr-oxo secondary building units and orthogonal carboxylic acids for ultra-sensitive metal detection.
    Carboni M; Lin Z; Abney CW; Zhang T; Lin W
    Chemistry; 2014 Nov; 20(46):14965-70. PubMed ID: 25294005
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Superprotonic conductivity of a UiO-66 framework functionalized with sulfonic acid groups by facile postsynthetic oxidation.
    Phang WJ; Jo H; Lee WR; Song JH; Yoo K; Kim B; Hong CS
    Angew Chem Int Ed Engl; 2015 Apr; 54(17):5142-6. PubMed ID: 25726943
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of Isostructural Porphyrin-Salen Chiral Metal-Organic Frameworks through Postsynthetic Metalation Based on Single-Crystal to Single-Crystal Transformation.
    Li J; Fan Y; Ren Y; Liao J; Qi C; Jiang H
    Inorg Chem; 2018 Feb; 57(3):1203-1212. PubMed ID: 29309133
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.