BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 29465235)

  • 41. Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis.
    Wang C; Xie Z; deKrafft KE; Lin W
    J Am Chem Soc; 2011 Aug; 133(34):13445-54. PubMed ID: 21780787
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Alkenyl/thiol-derived metal-organic frameworks (MOFs) by means of postsynthetic modification for effective mercury adsorption.
    Liu T; Che JX; Hu YZ; Dong XW; Liu XY; Che CM
    Chemistry; 2014 Oct; 20(43):14090-5. PubMed ID: 25210002
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhanced Activity and Enantioselectivity of Henry Reaction by the Postsynthetic Reduction Modification for a Chiral Cu(salen)-Based Metal-Organic Framework.
    Fan Y; Ren Y; Li J; Yue C; Jiang H
    Inorg Chem; 2018 Oct; 57(19):11986-11994. PubMed ID: 30199236
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Zinc Porphyrin/Imidazolium Integrated Multivariate Zirconium Metal-Organic Frameworks for Transformation of CO
    Liang J; Xie YQ; Wu Q; Wang XY; Liu TT; Li HF; Huang YB; Cao R
    Inorg Chem; 2018 Mar; 57(5):2584-2593. PubMed ID: 29430915
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Single crystal-to-single crystal site-selective postsynthetic metal exchange in a Zn-MOF based on semi-rigid tricarboxylic acid and access to bimetallic MOFs.
    Bajpai A; Chandrasekhar P; Govardhan S; Banerjee R; Moorthy JN
    Chemistry; 2015 Feb; 21(7):2759-65. PubMed ID: 25533890
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Surface-Specific Functionalization of Nanoscale Metal-Organic Frameworks.
    Wang S; Morris W; Liu Y; McGuirk CM; Zhou Y; Hupp JT; Farha OK; Mirkin CA
    Angew Chem Int Ed Engl; 2015 Dec; 54(49):14738-42. PubMed ID: 26492949
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Stepwise synthesis of robust metal-organic frameworks via postsynthetic metathesis and oxidation of metal nodes in a single-crystal to single-crystal transformation.
    Liu TF; Zou L; Feng D; Chen YP; Fordham S; Wang X; Liu Y; Zhou HC
    J Am Chem Soc; 2014 Jun; 136(22):7813-6. PubMed ID: 24840498
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Post-synthesis modification of a metal-organic framework to form metallosalen-containing MOF materials.
    Shultz AM; Sarjeant AA; Farha OK; Hupp JT; Nguyen ST
    J Am Chem Soc; 2011 Aug; 133(34):13252-5. PubMed ID: 21770411
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modular, active, and robust Lewis acid catalysts supported on a metal-organic framework.
    Tanabe KK; Cohen SM
    Inorg Chem; 2010 Jul; 49(14):6766-74. PubMed ID: 20565054
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reusable oxidation catalysis using metal-monocatecholato species in a robust metal-organic framework.
    Fei H; Shin J; Meng YS; Adelhardt M; Sutter J; Meyer K; Cohen SM
    J Am Chem Soc; 2014 Apr; 136(13):4965-73. PubMed ID: 24597832
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Snapshots of Postsynthetic Modification in a Layered Metal-Organic Framework: Isometric Linker Exchange and Adaptive Linker Installation.
    Lin W; Ning E; Yang L; Rao Y; Peng S; Li Q
    Inorg Chem; 2021 Aug; 60(16):11756-11763. PubMed ID: 34242019
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reversible Postsynthetic Modification in a Metal-Organic Framework.
    Mondal P; Neuschuler Z; Mandal D; Hernandez RE; Cohen SM
    Angew Chem Int Ed Engl; 2024 Feb; 63(9):e202317062. PubMed ID: 38150287
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Postsynthetic modification of metal-organic frameworks--a progress report.
    Tanabe KK; Cohen SM
    Chem Soc Rev; 2011 Feb; 40(2):498-519. PubMed ID: 21103601
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dioxole functionalized metal-organic frameworks.
    Dau PV; Polanco LR; Cohen SM
    Dalton Trans; 2013 Mar; 42(11):4013-8. PubMed ID: 23340964
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Metalation of a thiocatechol-functionalized Zr(IV)-based metal-organic framework for selective C-H functionalization.
    Fei H; Cohen SM
    J Am Chem Soc; 2015 Feb; 137(6):2191-4. PubMed ID: 25650584
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Simple and Non-Destructive Method for Assessing the Incorporation of Bipyridine Dicarboxylates as Linkers within Metal-Organic Frameworks.
    Hendon CH; Bonnefoy J; Quadrelli EA; Canivet J; Chambers MB; Rousse G; Walsh A; Fontecave M; Mellot-Draznieks C
    Chemistry; 2016 Mar; 22(11):3713-8. PubMed ID: 26807710
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Impact of Postsynthetic Modification on the Electrical and Magnetic Properties of Materials.
    Asha KS; Ahmed N; Nath R; Kuznetsov D; Mandal S
    Inorg Chem; 2017 Jul; 56(13):7316-7319. PubMed ID: 28627874
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Anion-Cation Mediated Structural Rearrangement of an In-derived Three-Dimensional Interpenetrated Metal-Organic Framework.
    Bellas MK; Mihaly JJ; Zeller M; Genna DT
    Inorg Chem; 2017 Jan; 56(2):950-955. PubMed ID: 28045512
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Functional metal-organic frameworks via ligand doping: influences of ligand charge and steric demand.
    Wang C; Liu D; Xie Z; Lin W
    Inorg Chem; 2014 Feb; 53(3):1331-8. PubMed ID: 24422471
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Establishing Porosity Gradients within Metal-Organic Frameworks Using Partial Postsynthetic Ligand Exchange.
    Liu C; Zeng C; Luo TY; Merg AD; Jin R; Rosi NL
    J Am Chem Soc; 2016 Sep; 138(37):12045-8. PubMed ID: 27593173
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.