BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 29465235)

  • 61. Amorphous metal-organic frameworks.
    Bennett TD; Cheetham AK
    Acc Chem Res; 2014 May; 47(5):1555-62. PubMed ID: 24707980
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Single-Crystal-to-Single-Crystal Postsynthetic Modification of a Metal-Organic Framework via Ozonolysis.
    Albalad J; Xu H; Gándara F; Haouas M; Martineau-Corcos C; Mas-Ballesté R; Barnett SA; Juanhuix J; Imaz I; Maspoch D
    J Am Chem Soc; 2018 Feb; 140(6):2028-2031. PubMed ID: 29364654
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Postsynthetic Modification of Metal-Organic Frameworks by Vapor-Phase Grafting.
    Rong S; Chen S; Su P; Tang H; Jia M; Xia Y; Li W
    Inorg Chem; 2021 Aug; 60(16):11745-11749. PubMed ID: 34080431
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Zirconium Metal-Organic Frameworks Assembled from Pd and Pt P
    Reiner BR; Mucha NT; Rothstein A; Temme JS; Duan P; Schmidt-Rohr K; Foxman BM; Wade CR
    Inorg Chem; 2018 Mar; 57(5):2663-2672. PubMed ID: 29437384
    [TBL] [Abstract][Full Text] [Related]  

  • 65. UiO-66 and its Br-modified derivates for elemental mercury removal.
    Zhang X; Shen B; Zhu S; Xu H; Tian L
    J Hazard Mater; 2016 Dec; 320():556-563. PubMed ID: 27612160
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Controlled Pyrolysis of Ni-MOF-74 as a Promising Precursor for the Creation of Highly Active Ni Nanocatalysts in Size-Selective Hydrogenation.
    Nakatsuka K; Yoshii T; Kuwahara Y; Mori K; Yamashita H
    Chemistry; 2018 Jan; 24(4):898-905. PubMed ID: 29115699
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Vapor-Phase Deposition and Modification of Metal-Organic Frameworks: State-of-the-Art and Future Directions.
    Stassen I; De Vos D; Ameloot R
    Chemistry; 2016 Oct; 22(41):14452-60. PubMed ID: 27483444
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A Titanium-Organic Framework as an Exemplar of Combining the Chemistry of Metal- and Covalent-Organic Frameworks.
    Nguyen HL; Gándara F; Furukawa H; Doan TL; Cordova KE; Yaghi OM
    J Am Chem Soc; 2016 Apr; 138(13):4330-3. PubMed ID: 26998612
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Trisequential Postsynthetic Modification of a Tagged IRMOF-9 Framework.
    Bryant MR; Cunynghame T; Hunter SO; Telfer SG; Richardson C
    Inorg Chem; 2021 Aug; 60(16):11711-11719. PubMed ID: 34152749
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Tandem postsynthetic metal ion and ligand exchange in zeolitic imidazolate frameworks.
    Fei H; Cahill JF; Prather KA; Cohen SM
    Inorg Chem; 2013 Apr; 52(7):4011-6. PubMed ID: 23516974
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Pressure-induced postsynthetic cluster anion substitution in a MIL-53 topology scandium metal-organic framework.
    Thom AJR; Turner GF; Davis ZH; Ward MR; Pakamorė I; Hobday CL; Allan DR; Warren MR; Leung WLW; Oswald IDH; Morris RE; Moggach SA; Ashbrook SE; Forgan RS
    Chem Sci; 2023 Jul; 14(28):7716-7724. PubMed ID: 37476711
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Spray Drying for Making Covalent Chemistry: Postsynthetic Modification of Metal-Organic Frameworks.
    Garzón-Tovar L; Rodríguez-Hermida S; Imaz I; Maspoch D
    J Am Chem Soc; 2017 Jan; 139(2):897-903. PubMed ID: 28045517
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Selective Catalytic Performances of Noble Metal Nanoparticle@MOF Composites: The Concomitant Effect of Aperture Size and Structural Flexibility of MOF Matrices.
    Chen L; Zhan W; Fang H; Cao Z; Yuan C; Xie Z; Kuang Q; Zheng L
    Chemistry; 2017 Aug; 23(47):11397-11403. PubMed ID: 28600870
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Functionalization of robust Zr(IV)-based metal-organic framework films via a postsynthetic ligand exchange.
    Fei H; Pullen S; Wagner A; Ott S; Cohen SM
    Chem Commun (Camb); 2015 Jan; 51(1):66-9. PubMed ID: 25364799
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Ti(3+)-, V(2+/3+)-, Cr(2+/3+)-, Mn(2+)-, and Fe(2+)-substituted MOF-5 and redox reactivity in Cr- and Fe-MOF-5.
    Brozek CK; Dincă M
    J Am Chem Soc; 2013 Aug; 135(34):12886-91. PubMed ID: 23902330
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Highly Sensitive and Selective Sensing of Free Bilirubin Using Metal-Organic Frameworks-Based Energy Transfer Process.
    Du Y; Li X; Lv X; Jia Q
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):30925-30932. PubMed ID: 28831805
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Microwave-assisted cyanation of an aryl bromide directly on a metal-organic framework.
    Kim M; Garibay SJ; Cohen SM
    Inorg Chem; 2011 Feb; 50(3):729-31. PubMed ID: 21207935
    [TBL] [Abstract][Full Text] [Related]  

  • 78. An X-ray Photoelectron Spectroscopy Study of Postsynthetic Exchange in UiO-66.
    Moreton JC; Low JX; Penticoff KC; Cohen SM; Benz L
    Langmuir; 2022 Feb; 38(4):1589-1599. PubMed ID: 35029998
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Moisture-resistant and superhydrophobic metal-organic frameworks obtained via postsynthetic modification.
    Nguyen JG; Cohen SM
    J Am Chem Soc; 2010 Apr; 132(13):4560-1. PubMed ID: 20232871
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Lanthanides post-functionalized nanocrystalline metal-organic frameworks for tunable white-light emission and orthogonal multi-readout thermometry.
    Zhou Y; Yan B
    Nanoscale; 2015 Mar; 7(9):4063-9. PubMed ID: 25660360
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.