These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 29465287)
1. The exoribonuclease Xrn1 is a post-transcriptional negative regulator of autophagy. Delorme-Axford E; Abernathy E; Lennemann NJ; Bernard A; Ariosa A; Coyne CB; Kirkegaard K; Klionsky DJ Autophagy; 2018; 14(5):898-912. PubMed ID: 29465287 [TBL] [Abstract][Full Text] [Related]
2. The yeast exoribonuclease Xrn1 and associated factors modulate RNA polymerase II processivity in 5' and 3' gene regions. Fischer J; Song YS; Yosef N; di Iulio J; Churchman LS; Choder M J Biol Chem; 2020 Aug; 295(33):11435-11454. PubMed ID: 32518159 [TBL] [Abstract][Full Text] [Related]
3. mRNA decay is regulated via sequestration of the conserved 5'-3' exoribonuclease Xrn1 at eisosome in yeast. Vaškovičová K; Awadová T; Veselá P; Balážová M; Opekarová M; Malinsky J Eur J Cell Biol; 2017 Sep; 96(6):591-599. PubMed ID: 28501103 [TBL] [Abstract][Full Text] [Related]
4. Activation of 5'-3' exoribonuclease Xrn1 by cofactor Dcs1 is essential for mitochondrial function in yeast. Sinturel F; Bréchemier-Baey D; Kiledjian M; Condon C; Bénard L Proc Natl Acad Sci U S A; 2012 May; 109(21):8264-9. PubMed ID: 22570495 [TBL] [Abstract][Full Text] [Related]
5. Comparison of Xrn1 and Rat1 5' → 3' exoribonucleases in budding yeast supports the specific role of Xrn1 in cotranslational mRNA decay. Pérez-Ortín JE; Jordán-Pla A; Zhang Y; Moreno-García J; Bassot C; Barba-Aliaga M; de Campos-Mata L; Choder M; Díez J; Piazza I; Pelechano V; García-Martínez J Yeast; 2024 Jul; 41(7):458-472. PubMed ID: 38874348 [TBL] [Abstract][Full Text] [Related]
6. Dissecting the roles of the 5' exoribonucleases Xrn1 and Xrn2 in restricting hepatitis C virus replication. Li Y; Yamane D; Lemon SM J Virol; 2015 May; 89(9):4857-65. PubMed ID: 25673723 [TBL] [Abstract][Full Text] [Related]
7. Recruitment of Xrn1 to stress-induced genes allows efficient transcription by controlling RNA polymerase II backtracking. García-Martínez J; Pérez-Martínez ME; Pérez-Ortín JE; Alepuz P RNA Biol; 2021 Oct; 18(10):1458-1474. PubMed ID: 33258404 [TBL] [Abstract][Full Text] [Related]
8. Atg4 plays an important role in efficient expansion of autophagic isolation membranes by cleaving lipidated Atg8 in Saccharomyces cerevisiae. Hirata E; Ohya Y; Suzuki K PLoS One; 2017; 12(7):e0181047. PubMed ID: 28704456 [TBL] [Abstract][Full Text] [Related]
9. The trehalose-6-phosphate phosphatase Tps2 regulates Kim B; Lee Y; Choi H; Huh WK Autophagy; 2021 Apr; 17(4):1013-1027. PubMed ID: 32240040 [TBL] [Abstract][Full Text] [Related]
10. Control of autophagosome size and number by Atg7. Cawthon H; Chakraborty R; Roberts JR; Backues SK Biochem Biophys Res Commun; 2018 Sep; 503(2):651-656. PubMed ID: 29906462 [TBL] [Abstract][Full Text] [Related]
11. The exonuclease Xrn1 activates transcription and translation of mRNAs encoding membrane proteins. Blasco-Moreno B; de Campos-Mata L; Böttcher R; García-Martínez J; Jungfleisch J; Nedialkova DD; Chattopadhyay S; Gas ME; Oliva B; Pérez-Ortín JE; Leidel SA; Choder M; Díez J Nat Commun; 2019 Mar; 10(1):1298. PubMed ID: 30899024 [TBL] [Abstract][Full Text] [Related]
12. The 5' → 3' exoribonuclease XRN1/Pacman and its functions in cellular processes and development. Jones CI; Zabolotskaya MV; Newbury SF Wiley Interdiscip Rev RNA; 2012; 3(4):455-68. PubMed ID: 22383165 [TBL] [Abstract][Full Text] [Related]
13. Identification of phlebovirus and arenavirus RNA sequences that stall and repress the exoribonuclease XRN1. Charley PA; Wilusz CJ; Wilusz J J Biol Chem; 2018 Jan; 293(1):285-295. PubMed ID: 29118186 [TBL] [Abstract][Full Text] [Related]
15. The transcription factor Spt4-Spt5 complex regulates the expression of Wen X; Gatica D; Yin Z; Hu Z; Dengjel J; Klionsky DJ Autophagy; 2020 Jul; 16(7):1172-1185. PubMed ID: 31462158 [TBL] [Abstract][Full Text] [Related]
16. Ume6 transcription factor is part of a signaling cascade that regulates autophagy. Bartholomew CR; Suzuki T; Du Z; Backues SK; Jin M; Lynch-Day MA; Umekawa M; Kamath A; Zhao M; Xie Z; Inoki K; Klionsky DJ Proc Natl Acad Sci U S A; 2012 Jul; 109(28):11206-10. PubMed ID: 22733735 [TBL] [Abstract][Full Text] [Related]
17. Phosphoproteomic analysis identifies proteins involved in transcription-coupled mRNA decay as targets of Snf1 signaling. Braun KA; Vaga S; Dombek KM; Fang F; Palmisano S; Aebersold R; Young ET Sci Signal; 2014 Jul; 7(333):ra64. PubMed ID: 25005228 [TBL] [Abstract][Full Text] [Related]
19. The Pat1-Lsm complex prevents 3' to 5' degradation of a specific subset of ATG mRNAs during nitrogen starvation-induced autophagy. Gatica D; Hu G; Zhang N; Williamson PR; Klionsky DJ Autophagy; 2019 Apr; 15(4):750-751. PubMed ID: 30885034 [TBL] [Abstract][Full Text] [Related]
20. Immunohistochemical localization of exoribonucleases (DIS3L2 and XRN1) in intranuclear inclusion body disease. Mori F; Tanji K; Miki Y; Toyoshima Y; Sasaki H; Yoshida M; Kakita A; Takahashi H; Wakabayashi K Neurosci Lett; 2018 Jan; 662():389-394. PubMed ID: 29100804 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]