These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

441 related articles for article (PubMed ID: 29465322)

  • 61. Proprioceptive errors in the localization of hand landmarks: What can be learnt about the hand metric representation?
    Peviani V; Bottini G
    PLoS One; 2020; 15(7):e0236416. PubMed ID: 32735572
    [TBL] [Abstract][Full Text] [Related]  

  • 62. How humans combine simultaneous proprioceptive and visual position information.
    van Beers RJ; Sittig AC; Denier van der Gon JJ
    Exp Brain Res; 1996 Sep; 111(2):253-61. PubMed ID: 8891655
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Sensory recalibration of hand position following visuomotor adaptation.
    Cressman EK; Henriques DY
    J Neurophysiol; 2009 Dec; 102(6):3505-18. PubMed ID: 19828727
    [TBL] [Abstract][Full Text] [Related]  

  • 64. 'Doublecheck: a sensory confirmation is required to own a robotic hand, sending a command to feel in charge of it'.
    Pinardi M; Ferrari F; D'Alonzo M; Clemente F; Raiano L; Cipriani C; Di Pino G
    Cogn Neurosci; 2020; 11(4):216-228. PubMed ID: 32748685
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Modality-specific Changes in Motor Cortex Excitability After Visuo-proprioceptive Realignment.
    Munoz-Rubke F; Mirdamadi JL; Lynch AK; Block HJ
    J Cogn Neurosci; 2017 Dec; 29(12):2054-2067. PubMed ID: 28777059
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Sensory integration does not lead to sensory calibration.
    Smeets JB; van den Dobbelsteen JJ; de Grave DD; van Beers RJ; Brenner E
    Proc Natl Acad Sci U S A; 2006 Dec; 103(49):18781-6. PubMed ID: 17130453
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Proprioception does not quickly drift during visual occlusion.
    Desmurget M; Vindras P; Gréa H; Viviani P; Grafton ST
    Exp Brain Res; 2000 Oct; 134(3):363-77. PubMed ID: 11045361
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Proprioceptive deficits in inactive older adults are not reflected in fast targeted reaching movements.
    Kitchen NM; Miall RC
    Exp Brain Res; 2019 Feb; 237(2):531-545. PubMed ID: 30478636
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Adaptation to proprioceptive targets following visuomotor adaptation.
    Flannigan JC; Posthuma RJ; Lombardo JN; Murray C; Cressman EK
    Exp Brain Res; 2018 Feb; 236(2):419-432. PubMed ID: 29209829
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Somatosensory target information is used for reaching but not for saccadic eye movements.
    Goettker A; Fiehler K; Voudouris D
    J Neurophysiol; 2020 Oct; 124(4):1092-1102. PubMed ID: 32845193
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Visuomotor adaptation and proprioceptive recalibration.
    Henriques DY; Cressman EK
    J Mot Behav; 2012; 44(6):435-44. PubMed ID: 23237466
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Sensory reweighting in targeted reaching: effects of conscious effort, error history, and target salience.
    Block HJ; Bastian AJ
    J Neurophysiol; 2010 Jan; 103(1):206-17. PubMed ID: 19846617
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Proprioceptive integration and body representation: insights into dancers' expertise.
    Jola C; Davis A; Haggard P
    Exp Brain Res; 2011 Sep; 213(2-3):257-65. PubMed ID: 21643713
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Differential contributions of vision, touch and muscle proprioception to the coding of hand movements.
    Blanchard C; Roll R; Roll JP; Kavounoudias A
    PLoS One; 2013; 8(4):e62475. PubMed ID: 23626826
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Limb position drift results from misalignment of proprioceptive and visual maps.
    Patterson JR; Brown LE; Wagstaff DA; Sainburg RL
    Neuroscience; 2017 Mar; 346():382-394. PubMed ID: 28163058
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Proprioceptive loss and the perception, control and learning of arm movements in humans: evidence from sensory neuronopathy.
    Miall RC; Kitchen NM; Nam SH; Lefumat H; Renault AG; Ørstavik K; Cole JD; Sarlegna FR
    Exp Brain Res; 2018 Aug; 236(8):2137-2155. PubMed ID: 29779050
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Dominance of vision over proprioception on motor programming: evidence from ERP.
    Touzalin-Chretien P; Ehrler S; Dufour A
    Cereb Cortex; 2010 Aug; 20(8):2007-16. PubMed ID: 20026485
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Integration of visual and proprioceptive afferents in kinesthesia.
    Guerraz M; Provost S; Narison R; Brugnon A; Virolle S; Bresciani JP
    Neuroscience; 2012 Oct; 223():258-68. PubMed ID: 22864182
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A key region in the human parietal cortex for processing proprioceptive hand feedback during reaching movements.
    Reichenbach A; Thielscher A; Peer A; Bülthoff HH; Bresciani JP
    Neuroimage; 2014 Jan; 84():615-25. PubMed ID: 24060316
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Vision of the hand prior to movement onset allows full motor adaptation to a multi-force environment.
    Bourdin C; Bringoux L; Gauthier GM; Vercher JL
    Brain Res Bull; 2006 Dec; 71(1-3):101-10. PubMed ID: 17113935
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.