These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 29465325)

  • 1. Ultra-fast accurate reconstruction of spiking activity from calcium imaging data.
    Rahmati V; Kirmse K; Holthoff K; Kiebel SJ
    J Neurophysiol; 2018 May; 119(5):1863-1878. PubMed ID: 29465325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inferring Neuronal Dynamics from Calcium Imaging Data Using Biophysical Models and Bayesian Inference.
    Rahmati V; Kirmse K; Marković D; Holthoff K; Kiebel SJ
    PLoS Comput Biol; 2016 Feb; 12(2):e1004736. PubMed ID: 26894748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between simultaneously recorded spiking activity and fluorescence signal in GCaMP6 transgenic mice.
    Huang L; Ledochowitsch P; Knoblich U; Lecoq J; Murphy GJ; Reid RC; de Vries SE; Koch C; Zeng H; Buice MA; Waters J; Li L
    Elife; 2021 Mar; 10():. PubMed ID: 33683198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Information-Theoretic Approach and Fundamental Limits of Resolving Two Closely Timed Neuronal Spikes in Mouse Brain Calcium Imaging.
    Soltanian-Zadeh S; Gong Y; Farsiu S
    IEEE Trans Biomed Eng; 2018 Nov; 65(11):2428-2439. PubMed ID: 29993383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision.
    Grewe BF; Langer D; Kasper H; Kampa BM; Helmchen F
    Nat Methods; 2010 May; 7(5):399-405. PubMed ID: 20400966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inference of neuronal network spike dynamics and topology from calcium imaging data.
    Lütcke H; Gerhard F; Zenke F; Gerstner W; Helmchen F
    Front Neural Circuits; 2013; 7():201. PubMed ID: 24399936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deconvolution of calcium imaging data using marked point processes.
    Shibue R; Komaki F
    PLoS Comput Biol; 2020 Mar; 16(3):e1007650. PubMed ID: 32163407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Techniques to identify and temporally correlate calcium transients between multiple regions of interest in vertebrate neural circuits.
    Sorensen J; Wiklendt L; Hibberd T; Costa M; Spencer NJ
    J Neurophysiol; 2017 Mar; 117(3):885-902. PubMed ID: 27903638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate spike estimation from noisy calcium signals for ultrafast three-dimensional imaging of large neuronal populations in vivo.
    Deneux T; Kaszas A; Szalay G; Katona G; Lakner T; Grinvald A; Rózsa B; Vanzetta I
    Nat Commun; 2016 Jul; 7():12190. PubMed ID: 27432255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computational model for how the fast afterhyperpolarization paradoxically increases gain in regularly firing neurons.
    Jaffe DB; Brenner R
    J Neurophysiol; 2018 Apr; 119(4):1506-1520. PubMed ID: 29357445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting action potentials in neuronal populations with calcium imaging.
    Smetters D; Majewska A; Yuste R
    Methods; 1999 Jun; 18(2):215-21. PubMed ID: 10356353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct extraction of signal and noise correlations from two-photon calcium imaging of ensemble neuronal activity.
    Rupasinghe A; Francis N; Liu J; Bowen Z; Kanold PO; Babadi B
    Elife; 2021 Jun; 10():. PubMed ID: 34180397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Benchmarking Spike Rate Inference in Population Calcium Imaging.
    Theis L; Berens P; Froudarakis E; Reimer J; Román Rosón M; Baden T; Euler T; Tolias AS; Bethge M
    Neuron; 2016 May; 90(3):471-82. PubMed ID: 27151639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spike and burst coding in thalamocortical relay cells.
    Zeldenrust F; Chameau P; Wadman WJ
    PLoS Comput Biol; 2018 Feb; 14(2):e1005960. PubMed ID: 29432418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical detection of neuron connectivity by random access two-photon microscopy.
    Shafeghat N; Heidarinejad M; Murata N; Nakamura H; Inoue T
    J Neurosci Methods; 2016 Apr; 263():48-56. PubMed ID: 26851307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Error estimation for reconstruction of neuronal spike firing from fast calcium imaging.
    Liu X; Lv X; Quan T; Zeng S
    Biomed Opt Express; 2015 Feb; 6(2):421-32. PubMed ID: 25780733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of neuronal population dynamics measured with calcium imaging and electrophysiology.
    Wei Z; Lin BJ; Chen TW; Daie K; Svoboda K; Druckmann S
    PLoS Comput Biol; 2020 Sep; 16(9):e1008198. PubMed ID: 32931495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical coupling between model midbrain dopamine neurons: effects on firing pattern and synchrony.
    Komendantov AO; Canavier CC
    J Neurophysiol; 2002 Mar; 87(3):1526-41. PubMed ID: 11877524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-speed two-photon calcium imaging of neuronal population activity using acousto-optic deflectors.
    Grewe BF; Helmchen F
    Cold Spring Harb Protoc; 2014 Jun; 2014(6):618-29. PubMed ID: 24890212
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.